ATTACHMENT 7b:

Contamination and Toxic Substances

Mold Investigations/ Background Air Sampling, and associated Mold/Biological Contaminant Remediation Protocols Woodbridge Apartments (20 Units) at 302 Grass Lane, Wilmington, NC 28405 (Unit #s 101-110, 201-205, 207 & 209-212)

July 7, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-178A-IAQ-M – 302 Grass Lane, Unit 101, Wilmington, NC - Mold Investigation

Enclosed are the results of the mold investigation conducted at the above referenced unit on June 24, 2021. Phoenix EnviroCorp (PEC) was retained to conduct a mold investigation and provide a mold remediation protocol.

Background Information: PEC conducted a mold investigation on June 1, 2021, identifying elevated airborne mold spore levels of *Penicillium/Aspergillus* within the bathroom and surface mold growth of *Cladosporium* on the bathroom ceiling.

This is a two-story apartment building on a slab. The subject unit is on the first floor. The unit is vacant with minimal contents/trash and without carpet.

The HVAC system was operating in the cool mode, set at 70° F upon PEC's arrival and during sampling.

Related Documents:

• PEC initial investigation report dated June 8, 2021

Note: For directional purposes "front" is determined by facing Grass Lane from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

Living room

• Suspect visible mold growth on the rear wall

<u>Kitchen</u>

• Apparent water damage within the cabinet on the front wall

Front right bedroom

- Apparent water damage/irregularities to the ceiling
- Apparent water damage to the rear and right baseboards

<u>Bathroom</u>

- Suspect visible mold growth on the ceiling and the front wall
- Apparent water damage within the cabinet on the front wall

Mold Testing – Surface: A non-viable surface sample was collected from an area of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

Location	Result
Living room rear wall	L – FG Penicillium/Aspergillus
	L – FG Chaetomium
	M – FG Stachybotrys

Moisture Readings: Moisture readings were collected with either a Delmhorst moisture meter or a Tramex Survey Encounter. Multiple readings were taken to represent areas and materials reported. *Readings are marked with either a D or T to denote which meter was used.* For drywall products, readings should be less than or equal to twelve percent ($\leq 12\%$) by Delmhorst and below fifty percent (50%) by Tramex. For wood products, normal moisture content should be less than fifteen percent (<15%) for both meters.

Moisture content measurements were as follows:

Living room

- Drywall walls = $\leq 10\%$ (D) and (T)
- Wood baseboards = $\leq 10\%$ (D)

<u>Kitchen</u>

• Wood cabinets = $\leq 10\%$ (D)

Front right bedroom

- Wood baseboards = $\leq 10\%$ (D)
- Ceiling drywall = $\leq 20\%$ (T)
- Drywall walls = $\leq 10\%$ (T)

Conclusions: Sample results identified surface mold growth of *Chaetomium*, *Stachybotrys*, and *Penicillium/Aspergillus* within the unit, in addition to elevated airborne mold spore levels and surface mold growth identified in PEC's investigative report date June 8, 2021. A mold remediation protocol that outlines remediation activities is attached.

Prior to commencement of mold remediation, the source of any water intrusions, leaks, and/or moisture/humidity issues shall be remedied. If water intrusions/moisture issues exist and are not remedied, mold can be expected to return.

After remediation activities are completed, but before put-back of removed components, post remediation verification shall be conducted. Upon notice, and for an additional fee, PEC can conduct post remediation verification testing.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

302 Grass Lane, Unit 101 Wilmington, NC 28405 Page 3 of 3

Thank you,

Shoenoz Virmchomed Shaenaz Mirmohamed

IH Technician

Enclosures

Tomm two

Tommie Green, CIEC Professional Industrial Hygienist

Photo 1

Suspect visible mold growth on the living room rear wall

Photo 2

View of contents left within the unit

Apparent water damage in the kitchen cabinet on the front wall

Photo 4

Apparent water damage/irregularity to the front right bedroom ceiling

Apparent water damage to the front right bedroom rear and right baseboards

Apparent water damage and suspect visible mold growth on the bathroom ceiling and front wall

Photo 7

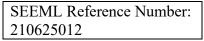
Apparent water damage within the bathroom cabinet on the front wall

Sampus allephd

CHAIN OF CUSTODY

LABORATORY TEST REQUEST WILLINGTON, NC 28403 Seemi ROF# 2106 25012 MU ED:044								
CONTACT:	Shaenaz Mi		TELEPHONE (910) 397-0370	氏 FAX (910) 313-6094	1 1	Sample date:	6/24/2021	l
PEC Job #: 21-21-178A-IAQ-M								
			SITE ADDRESS:	302 GldSS Ldlle, U	Juit 101, Willi	migton, NC 204	05	
SAMPLE TY		U: MMGREEN	N@PHOENIXENVIROCORP.COM NUMBER OF SAMPLES:	TURN AROUND T	IME SPECIFIE	D:		
	pore Trap - Mi	cro-5	and the second star with the second star			48 hrX S	Standard	
	Surface Samp	les						
San	mple #		Sample		Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature *F
06242	21-SM-01		Living room rear wall		1 cm sq	S001T	NA	NA
							1	
	D.							

CHAIN OF CUSTODY RECORD


Date Signed:

6/24/2021

Shoeman finchamed

Samples Collected By (Printed Name and Signature):

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/24/2021	13:30	Intact	Showing Findhamed	AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/25/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Surface and Bulk Sample Report

	Sulla	ce and Bulk Sample Report	
		Date Sampled:	
Attn: Phoenix E		Date Received:	06/25/21
4020 Shipyard		Date Analyzed:	06/25/21
Wilmington, NO	C 28403	Date Reported:	06/25/21
		Date Revised:	
		Project Name:	21-21-178A-IAQ-M
		Project Address:	302 Grass Lane, Unit 101
		Project City, State ZIP:	Wilmington, NC 28405
		SEEML Reference #:	210625012
TEST METHOD: Direct Micro	scopic Examination (SEEM	L SOP 18)	
Client Sample ID	062421-SM-01		
Location	Living Room Rear Wall		
SEEML Sample ID	210625012-044		
Sample Type	Таре		
	Quantification*		
Hyphal Fragments	L		
Pollen			
General Impressions **	FG		
Fungal Spore:			
Alternaria			
Acremonium			
Ascospores			
Basidiospores			
Bipolaris/Drechslera			
Cercospora			
Chaetomium	L		
Cladosporium			
Curvularia			
Epicoccum			
Fusarium			
Geotrichum sp.			
Memnoniella			
Myxomycetes			
Nigrospora			
Penicillium/Aspergillus	L		
Pithomyces			
Rusts/Smuts			
Stachybotrys	м		
Tetraploa			
Ulocladium			

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589 AIHA-LAP, LLC EMLAP # 173667 Texas License: LAB1016

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin
Acremonium crotocinigenum	Crotocin
Aspergillus favus	Alfatoxin B, cyclopiazonic acid
Aspergillus fumigatus	Fumagilin, gliotoxin
Aspergillus carneus	Critrinin
Aspergillus clavatus	Cytochalasin, patulin
Aspergillus Parasiticus	Alfatoxin B
Aspergillus nomius	Alfatoxin B
Aspergillus niger	Ochratoxin A, malformin, oxalicacid
Acremonium crotocinigenum	Crotocin
Aspergillus nidulans	Sterigmatocystin
Aspergillus ochraceus	Ochratoxin A, penicillic acid
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin
	Ausdiol, austamide,
Aspergillus ustus	austocystin, brevianamide
Aspergillus terreus	Citreoviridin
	Alternariol, altertoxin, altenuene, altenusin,
Alternaria	tenuazonic acid
Arthrinium	Nitropropionic acid
	Cytochalasin, sporidesmin,
Bioploaris	sterigmatocystin
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin
Cladosporium	Cladosporic acid
Clavipes purpurea	Ergotism
Cylindrocorpon	Trichothecene
Diplodia	Diplodiatoxin
Fusarium	Trichothecene, zearalenone
Fusarium moniliforme	Fumonisins
Emericella nidulans	Sterigmatocystin
Gliocladium	Gliotoxin
	Griseofulvin, dechlorogriseofulvin, epi-
Memnoniella	decholorgriseofulvin, trichodermin,
	trichodermol
Myrothecium	Trichothecene
Paecilomyces	Patulin, viriditoxin
Penicillium aurantiocandidum	Penicillic acid
Penicillium aurantiogriseum	Penicillic acid
Penicillium brasilanum	Penicillic acid
Penicillium brevicompactum	Mycophenolic acid
Penicillium camemberti	Cyclopiazonic acid
Penicillium carneum	Mycophenolic acid, Roquefortine C
Penicillium crateriforme	Rubratoxin

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:

July 7, 2021

For:

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

Remediation Contractor:

Not determined

On-Site Consultant:

Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Shoemoz V firmchamed

Shaenaz Mirmohamed IH Technician

Tomm hu

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECTI	ON 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	7
1.6	Post Remediation Verification Testing	7
SECTI	ION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	8
SECTI	ON 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	9
SECTI	ON 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	9
SECTI	ON 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SECTI	ON 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SECTI	ON 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	10
7.3	Quality Assurance	12
7.4	Materials and Equipment	13

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute =Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

PEC Job #: 21-21-178A-IAQ-M

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow. Prior to isolating the vents, the register covers (diffusers) shall be removed, and the supply shall be isolated at the metal boot. Once isolated, the registers and surrounding building materials shall be cleaned.
- The interior of the air handler, rigid duct system, intake box, etc. shall be thoroughly cleaned by an HVAC professional experienced in mold remediation. The interior can be cleaned with mechanical methods that aggressively disturb all interior surfaces and filter the disturbed airborne particulates.

- Cleaning of components shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris.
- PEC recommends the removal and disposal of the flex ducts when feasible, as well as any interior duct board where cleaning will damage the duct board. Once removed, the remediation contractor shall isolate the connection point where the flex duct and/or duct board was detached with a critical barrier (such as plastic, etc.) to prevent air flow.
- Once the HVAC system components are cleaned or replaced anew, the system shall remain off and isolated until acceptable post remediation results are obtained.
- A written document shall be obtained from the remediation contractor verifying that the HVAC system has been cleaned by an HVAC cleaning company with mold experience. This document shall include the property address and date of services and shall be filed with other mold remediation documents.

Note: For directional purposes "front" is determined by facing Grass Lane from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation.

Within the living room:

• Remove drywall from the rear wall. The length of this removal shall be the entire length of the wall beginning at the left wall and extending 8 feet to the right wall. The height of this removal shall be 3 feet beginning at the floor and extending towards the ceiling.

Within the kitchen:

• Detach the floor mounted cabinet from the front wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.

Within the front right bedroom:

- Remove the ceiling drywall entirely (12 feet by 10 feet).
- Remove the baseboards entirely from the rear and right walls, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.

Within the bathroom:

- Detach the floor mounted cabinet from the front wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.
- Remove ceiling drywall. The length of this removal shall be 5 feet beginning at the left wall and extending towards the right wall. The width of this removal shall be 2 feet beginning at the front wall and extending towards the rear wall.
- Remove drywall from the front wall. The length of this removal shall be 5 feet, beginning at the left wall and extending towards the right wall. The height of this removal shall be 2 feet beginning at the ceiling and extending towards the floor.

Throughout the unit (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

- Discard contents/trash (excluding appliances) or clean contents as specified herein under general specifications for primary control areas. Cleaning or discarding the contents shall be confirmed by the owners or powers that be.
- Clean all remaining surfaces as specified herein under general specifications for primary control areas.
- Areas of specified ceiling removal shall be sealed with poly (i.e., critical barrier) after cleaning, but before HEPA air scrubbing after cleaning, to prevent air flow from areas outside the containment area. An access door (i.e., poly flap taped in place, zipper, etc.) shall be installed in the critical barrier for easy access to conduct a visual inspection of the building materials behind the critical barrier.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Non-porous, semi-porous, and porous furnishings and contents shall be cleaned. If items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be to determine if they shall be disposed.
- All machine washable porous cloth items shall be cleaned and dried in a household washer and dryer. Other specialty items shall be cleaned by a dry cleaner that specializes in cleaning materials affected with mold. These items shall be removed from affected area(s) and shall not be reintroduced back into the area(s) until acceptable post remediation testing is established. If porous articles cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not

PEC Job #: 21-21-178A-IAQ-M

recontaminated (i.e. working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% + /-3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Page 7 of 14

Phoenix EnviroCorp initial investigative report dated June 8, 2021.

Phoenix EnviroCorp investigative report dated July 7, 2021.

Phoenix EnviroCorp Chain of Custody dated June 1, 2021, and June 24, 2021.

Analytical reports dated June 2, 2021, and June 25, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future exposures will not occur.

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial

PEC Job #: 21-21-178A-IAQ-M

contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Analytical Method
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e. broken-pipe-line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

7.2

IICRC S520 2 nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings
Definitions	

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

PEC Job #: 21-21-178A-IAQ-M

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

June 8, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-178-IAQ-M - 302 Grass Lane, Apartment 102, Wilmington, NC - Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced residence on June 1, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling to determine airborne mold spore levels and to collect surface samples of suspect visible mold growth.

Background Information: The resident called to report that the hot water heater is leaking and has leaked into her closet.

The unit was occupied and fully furnished with contents throughout.

The HVAC system was operating in the cool mode, set at 70° F upon PEC's arrival and during sampling.

Note: For directional purposes "front" is determined by facing the grass area adjacent to the parking lot from inside the building, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

- Apparent minor water damage/staining in the bathroom cabinet underneath the sink
- Apparent minor water damage/staining in the kitchen cabinet underneath the sink
- No suspect visible mold growth observed

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen/living room, the bathroom, the rear left bedroom, and the rear right bedroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.*

Results indicated acceptable levels of airborne mold spores in all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the residence ranged from 65.0% - 70.9% with an outdoor RH level of 58.8% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%. Consistent RH levels above 60% is conducive to mold growth.

Conclusions: Air sampling within the tested areas did not indicate a problem with the indoor air quality regarding mold, and no surface mold growth was identified.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

White Burn

Philip Green IH Technician

Jour An

Tommie Green, CIEC Professional Industrial Hygienist

Enclosures

Photo 1

Apparent minor water damage/staining in the cabinet underneath the bathroom sink

Photo 2

Apparent minor water damage/staining in the cabinet underneath the kitchen sink

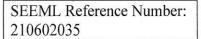
samples allemed

Phoenix EnviroCorp

CHAIN OF CUSTODY

LABORATORY TEST REQUEST

WILMINGTON, NC 25403	SeemI pust 210602035	ID ID!	107-110)	and a state of the state of the state of the
ONTACT: Philip Green	TELEPHONE (910) 397-0370 FAX (910) 313-6094		6/1/2021		
EC Job #: 21-21-179-IAQ-M	SITE ADDRESS: 302 Grass Lane, Apt.10	2, Wilmington,	NC 28405		ana an
LEASE EMAIL RESULTS TO: KMGR AMPLE TYPE: Spore Trap - Micro-5 Surface Samples	REEN@PHOENIXENVIROCORP.COM NUMBER OF SAMPLES: 4 Immediate		nrX Standard	1	
Sample #	Sample Area	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperatur *F
060121-PG-201	Kitchen/Living Room	25L	S001	67.1	72.4
060121-PG-202	Bathroom	25L	S001	65.0	71.5
060121-PG-203	Rear Left Bedroom	25L	S001	67.9	70.3
060121-PG-204	Rear Right Bedroom	25L	S001	70.9	73.2
				_	
		Contraction of the second s			n a ser din ser anna an 11 anna ann
				en Kultur son an	


Samples Collected By (Printed Name and Signature):

Reiter

Date Signed: 6/1/2021

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/1/2021	14:30:00 PM	Intact	plantam	JM 6-10-21
			AFFILIATION:	AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

 \boxtimes

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/02/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			Spor	e Trap Re		Sampled	: 06/01/21				
Attn: Phoonix Env	iro Corn										
	Attn: Phoenix Enviro Corp.					Date Received: 06/02/21 Date Analyzed: 06/02/21					
4020 Shipyard Bly				- 101.000 (sec.0			1: 06/02/21				
Wilmington, NC 2											
						Revised					
							: 21-21-179-				
								Lane, Apt. 102			
					Project City, S						
					-	erence #	: 210602035				
TEST METHOD: DIRECT N					and the second se						
Client Sample ID	0	60121-PG-20	1	0	60121-PG-202	2	0	60121-PG-203			
Location	Kit	chen/Living Roo	m		Bathroom		Re	ear Left Bedroom	ı		
Lab Sample ID	2	10602035-107	7	2	10602035-108	3	2	10602035-109			
Comments	2	10002033-107			10002000-100	<i>.</i>		10002000-109			
Hyphal Fragments											
Pollen		+									
Spore Trap Used		M5			M5			I			
opore map used	routet	2,221,222,0	%	rowet	spores/m ³	%	rowat	spores/m ³	%		
Alternerie	raw ct.	spores/m ³	%	raw ct.	spores/m	70	raw ct.	spores/m	70		
Alternaria	and the second								China and a sub-		
Ascospores											
Basidiospores	1	40	14								
Bipolaris/Drechslera											
Chaetomium								and the second state of the second state			
Cladosporium	3	120	43	13	520	87	None				
Curvularia							Detected				
Epicoccum											
Cercospora				-							
Fusarium											
Memnoniella											
Nigrospora									Ann an Air Air		
Penicillium/Aspergillus	3	120	43	2	80	13					
Polythrincium											
Rusts											
Smuts/Periconia/Myxomy											
Spegazzinia											
Stachybotrys											
Stemphylium											
Tetraploa					and the second second						
Torula											
Ulocladium											
Colorless/Other Brown*											
Oidium											
Zygomycetes											
Pithomyces						10000					
Background debris (1-5)**	3			3			1	and the second			
Sample Volume(liters)	25			25			25				
TOTAL SPORES/M ³	7	280		15	600		0				

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore.

The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Form 18.0 Rev 09 07/30/20

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667

Texas Lic: LAB1016

Page 2 of 13

Tron Donor

			Spore I	rap Report	i				
					Date Sampled:	06/01/21			
Attn: Phoenix Env	viro Corp.			Date Received: 06/02/21					
4020 Shipyard BI	vd.			Date Analyzed: 06/02/21					
Wilmington, NC 2	28403			Date Reported: 06/02/21					
					Date Revised:				
					Project Name:	21-21-179-	-IAQ-M		
					Project Address:)	
			al an anionestatic s	Proie	ct City, State, ZIP:				
					ML Reference # :				
TEST METHOD: DIRECT M	/ICROSCO	OPY EXAMIN	ATION SEEM				The Park Annalis area in a state more than the		
Client Sample ID		60121-PG-20							
						1			
Location		ar Right Bedro	and a second second second second						
Lab Sample ID	2	10602035-11	0		-				
Comments									
Hyphal Fragments									
Pollen									
Spore Trap Used		M5							
	raw ct.	spores/m ³	%						
Alternaria									
Ascospores									
Basidiospores									
Bipolaris/Drechslera									
Chaetomium									
Cladosporium	1	40	20						
Curvularia									
Epicoccum									
Cercospora									
Fusarium									
Memnoniella									
Nigrospora									
Penicillium/Aspergillus	4	160	80						
Polythrincium						Constant and			
Rusts									
Smuts/Periconia/Myxomy									
Spegazzinia									
Stachybotrys									
Stemphylium									
Tetraploa			Stream and the						
Torula									
Ulocladium									
Colorless/Other Brown*									
Oidium									
Zygomycetes									
Pithomyces									
Background debris (1-5)**	2								
Sample Volume(liters)	25								
TOTAL SPORES/M ³	5	200		and the second second					

Revisions:

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore.

The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Texas Lic: LAB1016

Form 18.0 Rev 09 07/30/20

CHAIN OF CUSTODY

LABORATORY TEST REQUEST

CONTACT: Philip Green		TELEPHONE (910) 397-0370 F	6/1/2021				
PEC Job #: 21-21-178,1	79,181-IAQ-M	SITE ADDRESS:	302 Grass Lane, Wilmington, NC 28405				
PLEASE EMAIL RESULTS T	O: KMGREEN@	PHOENIXENVIROCORP.COM					
SAMPLE TYPE: Spore Trap - Mic		NUMBER OF SAMPLES: 2	TURN AROUND TIME SPE		X Standard		
Surface Samp		0					
Sample #		Sample Area		Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature °F
060121-PG-301							75.5
000121-PG-301		Outside - Front		25L	S001	58.8	/3.3
060121-PG-302		Outside - Rear		25L	S001		
			Nau Pum	L			
Samples Collected By (Prin	ted Name and	Signature):	1 aller man		Date Signed:	6/1/2021	

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/1/2021	14:30:00 PM	Intact	Nales Aum	
			AFFILIATION:	AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/02/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			_						
					Date	e Sampled	: 06/01/21		
Attn: Phoenix En	viro Corp.			Date Received: 06/02/21					
4020 Shipyard E	Blvd.				Date	e Analyzed	: 06/02/21		
Wilmington, NC	28403				Date	e Reported	: 06/02/21		
					Da	te Revised	:		
					Pro	ject Name	: 21-21-178	3,179,181-IA	Q-M
					Proje	ct Address	: 302 Grass	s Lane	
					Project City,	State, ZIP	: Wilmingto	n, NC 28405	5
					SEEML Re	ference # :	21060203	4	
TEST METHOD: DIRECT	MICROSCO	OPY EXAMIN	NATION SE	EML SOP	7				
Client Sample ID	0	60121-PG-3	01	0	060121-PG-302				
Location		Outside-Fron	t	Outside-Rear					
Lab Sample ID	2	21060234-10)5	21060234-106					
Comments									
Hyphal Fragments	1	40							
Pollen	2	80		1	40				
Spore Trap Used		M5			M5				
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%			
Alternaria	18	720	5	3	120	2			
Ascospores	50	2000	13	64	2560	34			

Lab Sample ID	4	21000234-10	5	4	21000234-100)		
Comments								
Hyphal Fragments	1	40						
Pollen	2	80		1	40			
Spore Trap Used		M5			M5			
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%		
Alternaria	18	720	5	3	120	2		
Ascospores	50	2000	13	64	2560	34		
Basidiospores	50	2000	13	57	2280	31		
Bipolaris/Drechslera	2	80	<1					
Chaetomium								
Cladosporium	253	10100	63	58	2320	31		
Curvularia	1	40	<1	1	40	<1		
Epicoccum	22	880	6	1	40	<1		
Cercospora								
Fusarium								
Memnoniella								
Nigrospora								
Penicillium/Aspergillus				2	80	1		
Polythrincium								
Rusts	3	120	<1					
Smuts/Periconia/Myxomy	2	80	<1					
Spegazzinia								
Stachybotrys								
Stemphylium								
Tetraploa								
Torula								
Ulocladium								
Colorless/Other Brown*								
Oidium								
Zygomycetes								
Pithomyces								
Background debris (1-5)**	3			3				
Sample Volume(liters)	25			25				
TOTAL SPORES/M ³	401	16000		186	7440			

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory 102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin					
Acremonium crotocinigenum	Crotocin					
Aspergillus favus	Alfatoxin B, cyclopiazonic acid					
Aspergillus fumigatus	Fumagilin, gliotoxin					
Aspergillus carneus	Critrinin					
Aspergillus clavatus	Cytochalasin, patulin					
Aspergillus Parasiticus	Alfatoxin B					
Aspergillus nomius	Alfatoxin B					
Aspergillus niger	Ochratoxin A, malformin, oxalicacid					
Acremonium crotocinigenum	Crotocin					
Aspergillus nidulans	Sterigmatocystin					
Aspergillus ochraceus	Ochratoxin A, penicillic acid					
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin					
	Ausdiol, austamide,					
Aspergillus ustus	austocystin, brevianamide					
Aspergillus terreus	Citreoviridin					
	Alternariol, altertoxin, altenuene, altenusin,					
Alternaria	tenuazonic acid					
Arthrinium	Nitropropionic acid					
	Cytochalasin, sporidesmin,					
Bioploaris	sterigmatocystin					
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin					
Cladosporium	Cladosporic acid					
Clavipes purpurea	Ergotism					
Cylindrocorpon	Trichothecene					
Diplodia	Diplodiatoxin					
Fusarium	Trichothecene, zearalenone					
Fusarium moniliforme	Fumonisins					
Emericella nidulans	Sterigmatocystin					
Gliocladium	Gliotoxin					
	Griseofulvin, dechlorogriseofulvin, epi-					
Memnoniella	decholorgriseofulvin, trichodermin,					
	trichodermol					
Myrothecium	Trichothecene					
Paecilomyces	Patulin, viriditoxin					
Penicillium aurantiocandidum	Penicillic acid					
Penicillium aurantiogriseum	Penicillic acid					
Penicillium brasilanum	Penicillic acid					
Penicillium brevicompactum	Mycophenolic acid					
Penicillium camemberti	Cyclopiazonic acid					
Penicillium carneum	Mycophenolic acid, Roquefortine C					
Penicillium crateriforme	Rubratoxin					

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

SITE: 302 Grass Lane, Apartment 102, Wilmington, NC 28405

PEC Job #: 21-21-179B-IAQ-M December 26, 2021

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	December 26, 2021
For:	Quanesha Mullins Wilmington Housing Authority 1524 S. 16 th Street Wilmington, NC 28401
Remediation Contractor:	Not determined
On-Site Consultant:	Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

him

Philip Green IH Technician

Tomm two

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECTION 1.0 REMEDIATION PROCEDURES

1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	7
1.5	Cleanup Overview	7
1.6	Post Remediation Verification Testing	7
SECTI	ON 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	8
2.2	Project Description	8
SECTI	ON 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	9
3.3	Sample Integrity and Reporting	9
SECTI	ON 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	9
SECTI	ON 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SECTI	ON 6.0 WASTE CONTROL	
6.1	Waste Disposal	10
SECTI	ON 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	10
7.2	Definitions	10
7.3	Quality Assurance	12
7.4	Materials and Equipment	13

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute =Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

SITE: 302 Grass Lane, Apartment 102, Wilmington, NC 28405

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow. Prior to isolating the vents, the register covers (diffusers) shall be removed, and the supply shall be isolated at the metal boot. Once isolated, the registers and surrounding building materials shall be cleaned.
- The interior of the air handler, rigid duct system, intake box, etc. shall be thoroughly cleaned by an HVAC professional experienced in mold remediation. The interior shall be cleaned with mechanical methods that aggressively disturb all interior surfaces and filter the disturbed airborne particulates to avoid cross contamination, or other equivalent methods.
- Cleaning of components shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris.

- PEC recommends the removal and disposal of any fibrous or porous materials (i.e., insulation, etc.) from the interior of the HVAC system, to include but not limited to the air handler and rigid ductwork system. PEC also recommends that an HVAC professional design the re-insulation of the HVAC system without the use of porous interior insulation when possible.
- PEC recommends the removal and disposal of the flex ducts when feasible, as well as any interior duct board where cleaning will damage the duct board. Once removed, the remediation contractor shall isolate the connection point where the flex duct and/or duct board was detached with a critical barrier (such as plastic, etc.) to prevent air flow.
- The remediation contractor shall be responsible for coordinating the cleaning of the HVAC system and other specified remediation to avoid cross contamination.
- Once the HVAC system components are cleaned or replaced anew, the system shall remain off and isolated until acceptable post remediation results are obtained.
- A written document shall be obtained from the remediation contractor verifying that the HVAC system has been cleaned by an HVAC cleaning company with mold experience. This document shall include the property address and date of services and shall be filed with other mold remediation documents.

Note: For directional purposes "front" is determined by facing the playground from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation.

Within the kitchen:

- Detach the kitchen floor-mounted cabinet with sink along the left wall and discard the water damaged components.
- Remove all drywall from the left wall associated with the sink (approximately 7-foot-by-4-foot).

Within the bathroom:

- Detach the floor-mounted cabinet with sink along the front wall and discard all water damaged components.
- Remove all baseboards.
- Assess the drywall uncovered by the removal of the specified cabinet and baseboards and remove any affected drywall (i.e., drywall with suspect visible mold growth/apparent water damage) and extend the drywall removal within a 2-foot radius of any affected area when possible.
- Remove any loose floor tiles.

Within the rear left bedroom closet:

- Remove the water heater to allow access to the floor and walls obstructed by the water heater.
- Remove all baseboards.
- Assess the drywall behind the water heater and baseboards specified for removal and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of any affected drywall when possible.
- Remove any loose floor tiles.

Throughout the unit (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

• Clean all surfaces, furnishings and contents as specified herein under general specifications for primary control areas.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- The contractor shall use precaution when utilizing wet methods for cleaning of components and furnishings. If the contractor determines that wet methods will damage materials/components, those items shall be HEPA vacuumed only.
- Non-porous, semi-porous, and porous furnishings and contents shall be cleaned. If items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be to determine if they shall be disposed.
- All machine washable porous cloth items shall be cleaned and dried in a household washer and dryer. Other specialty items shall be cleaned by a dry cleaner that specializes in cleaning materials affected with mold. These items shall be removed from affected area(s) and shall not be reintroduced back into the area(s) until acceptable post remediation testing is established. If porous articles cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- Mattresses shall be cleaned utilizing HEPA vacuuming, NOT by pressure extraction or wet methods. If suspect visible mold growth is on the mattress or if the mattress cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be prior to disposal.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- All wall cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.
- Furnishings and contents that are specified for cleaning shall be protected with polyethylene in areas where building components are specified for removal, prior to the removal of building components to avoid cross contamination. The protective covering shall be removed, and the furnishings and contents shall be cleaned prior to post visual inspection and testing.
- The remediation contractor shall document any drywall/wallboard that requires removal, in addition to the specified amount, prior to removal (i.e., drywall that is specified to be assessed by the remediation contractor, etc.). Documentation shall include photos and specific location at a minimum.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not re-contaminated (i.e., working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be placed in an enclosed container prior to transporting the material through the building and to the waste container, and prior to visual inspection by the CIEC/CIE/IH.

Areas shall be allowed to dry for a period until RH and moisture levels specified below have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter or equivalent), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% +/-3% (for all interior areas). The remediation contractor shall verify moisture content of all wooden and cellulosic building components within the impacted areas, as well as RH levels prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

Criteria for post remediation air sampling can be viewed in PEC's investigative report(s) listed in Section 2.1 below. This information can be found within the air sampling section of said report(s).

SECTION 2.0 SCOPE OF WORK (Note: Section 2.1 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp initial investigative report dated June 8, 2021.

Phoenix EnviroCorp investigative report dated August 30, 2021, and December 26, 2021.

Phoenix EnviroCorp Chain of Custody dated June 1, 2021, August 18, 2021, and December 14, 2021.

Analytical reports dated June 2, 2021, August 20, 2021, and December 16, 2021.

2.2 **Project Description**

The procedures covered by this program/protocol include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by this program/protocol include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials shall be appropriately protected during the removal process to avoid exposure.

This program/protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close as possible to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it may become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of

clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no PELs or TLVs for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Post remediation sample results shall be available within seven (7) business days of the completion of collection and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e., brokenpipeline, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste shall be transported to the landfill in such a way to ensure that it does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. This protocol shall be reviewed by the remediation contractor prior to initiation of set-up for the project. Any questions regarding this protocol shall be addressed with the generator or appropriate Phoenix EnviroCorp personnel.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, which may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory

Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

The contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134. At a minimum, an N-95 dust mask shall be utilized.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

July 23, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-238-IAQ-M; 302 Grass Lane, Apartment 103, Wilmington, NC – Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on July 14, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling and to collect surface samples of suspect visible mold growth.

Background Information: The HVAC system was operating in the cool mode, set at 69° F upon PEC's arrival and during sampling.

Note: For directional purposes, "front" is determined by facing the parking lot and the playground from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

- Suspect visible mold growth on and around the HVAC supply vent in the bathroom
- Paint peeling from the ceiling in the bathroom
- Suspect visible mold growth/dust on the HVAC supply vent in the rear right bedroom

Mold Testing – Surface: Non-viable surface samples were collected from areas of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

Location	<u>Result</u>
HVAC supply vent in the bathroom	NFG - ND

HVAC supply vent in the rear right bedroom

Scattered Spores Penicillium/Aspergillus

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen, the bathroom, the rear right bedroom, and the rear left bedroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within the sample was assigned a unique for a total volume of twenty-five (25) liters per sample.*

their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.

Results indicated acceptable levels of airborne mold spores in all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the unit ranged from 50.6% - 65.4% with an outdoor RH level of 64.8% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%. **Consistent RH levels above 60% is conducive to mold growth.**

Conclusions: Air sampling within the tested areas did not indicate a problem with the indoor air quality regarding mold, and there was no surface mold growth identified.

Based on this investigation, it is PEC's opinion that the peeling paint in the bathroom is due to high humidity. PEC recommends having the HVAC system assessed by a competent HVAC professional for proper installation and functioning, paying special attention to high humidity issues.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

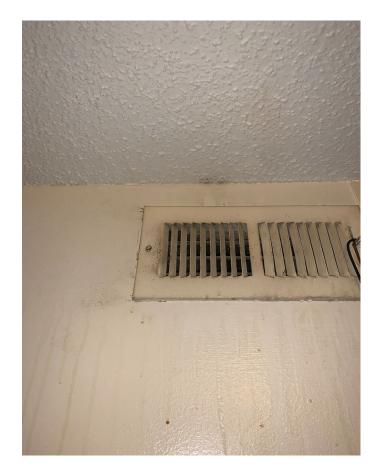
Philip Green IH Technician

Jour An

Tommie Green, CIEC Professional Industrial Hygienist

Enclosures

Photo 1



Suspect visible mold growth/dust on and around the HVAC supply vent in the bathroom

Photo 2

Paint peeling from the ceiling in the bathroom

Suspect visible mold growth/dust on the HVAC supply vent in the rear right bedroom

samples allepted

CHAIN OF CUSTODY

LABORATORY TEST REQUEST

4020 SHEYARD BLVD. WILMINGTON, NC 28403	Stem Rost 210716020	I KEQUEST	106 7010	0-06	(1		
ONTACT: Philip Green	TELEPHONE (910) 397-0370 FAX (910) 313-6094	1	106 ID:057-064 7/14/2021				
EC Job #: 21-21-237-IAQ-M		03 Wilmington	NC 28405				
LEASE EMAIL RESULTS TO: KM AMPLE TYPE:	AGREEN@PHOENIXENVIROCORP.COM	os, minington	, NC 20403				
Spore Trap - Micro-5 Surface Samples	NUMBER OF SAMPLES: 6 2 TURN AROUND TIME S 1 Immediate 2		rX Standard				
Sample #	Sample Area	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature *F		
071421-PG-01	Kitchen/Living Room	25L	S001	50.6	75.6		
071421-PG-02 ¥	Bathroom	25L	S001	54.0	75.8		
071421-PG-03 ⁹	Rear Right Bedroom	25L	S001	65.4	73.7		
071421-PG-04 /	Rear Left Bedroom	25L	S001	53.9	70.4		
071421-PG-05	Outside - Front	25L	S001	64.8	87.1		
071421-PG-06	Outside - Rear	25L	S001				
071421-PG-101 B	lack SVMG/Dust on HVAC supply vent in the bathroom	1 cm sq	S001T				
071421-PG-102 Blac	k SVMG/Dust on HVAC supply vent in rear right bedroom	1 cm sq	S001T				
			e'				
				_			
			1.1	eding*			
1							
nples Collected By (Printed Nam	ne and Signature):						

7

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
7/14/2021	17:00 PM	Intact	Nac Burn	JH Hin
			AFFILIATION:	AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 07/16/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

				е парке		Sampled	: 07/14/21		
Attn: Phoenix Enviro Corp.							: 07/16/21		
4020 Shipyard Blvd.							: 07/16/21		
Wilmington, NC 28403				Date Reported: 07/16/21					
						Revised			
							: 21-21-237	-IAQ-M	
								Lane, Apt 103	
					Project City, S				
					SEEML Ref				
TEST METHOD: DIRECT M	IICROSCO	DPY EXAMIN	ATION SE	EEML SOP					
Client Sample ID)71421-PG-0)71421-PG-02	2		071421-PG-03	
Location	Kito	chen/Living Ro	om		Bathroom		Re	ear Right Bedroo	m
Lab Sample ID	2	10716020-05	57	2	10716020-05	8		210716020-059	
Comments			-			-	+		
Hyphal Fragments					1 1				
Pollen	1	40			1 1				
Spore Trap Used		M5			M5			M5	
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%
Alternaria	1417 01.	5,00,00	70		200.00,	,0	10.00 00.		,0
Ascospores				2	80	4	2	80	3
Basidiospores	27	1080	51	36	1440	71	45	1800	74
Bipolaris/Drechslera		1000					10	1000	, ,
Chaetomium					1 1				
Cladosporium	6	240	11	1	40	2	2	80	3
Curvularia	1	40	2		10	-	1	40	2
Epicoccum	•	10	-				1	40	2
Cercospora									_
Fusarium									
Memnoniella									
Nigrospora									
Penicillium/Aspergillus	19	760	36	12	480	24	10	400	16
Polythrincium									
Rusts				1					
Smuts/Periconia/Myxomy									
Spegazzinia									
Stachybotrys									
Stemphylium									
Tetraploa									
Torula									
Ulocladium									
Colorless/Other Brown*									
Oidium									
Zygomycetes									
Pithomyces									
Background debris (1-5)**	3			3			3		
Sample Volume(liters)	25			25			25		
TOTAL SPORES/M ³	53	2120		51	2040		61	2440	
Revisions:		20							

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory 102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Spore Trap Report

				е парке		Sampled	: 07/14/21			
Attn: Phoenix Enviro Corp.							: 07/16/21			
4020 Shipyard Blvd.										
	Wilmington, NC 28403			Date Analyzed: 07/16/21 Date Reported: 07/16/21						
Winnington, NO 2	.0400		Date Reported: 07/16/21 Date Revised:							
							: 21-21-237-	IAO-M		
								Lane, Apt 103		
					Project City, \$					
					SEEML Ref					
TEST METHOD: DIRECT N							. 210710020)		
Client Sample ID		71421-PG-0		-	/)71421-PG-0	5		071421-PG-06		
Location	Re	ear Left Bedroo	om		Outside - Front	t		Outside - Rear		
Lab Sample ID	2	10716020-06	60	2	10716020-06	1	2	210716020-062		
Comments										
Hyphal Fragments										
Pollen										
Spore Trap Used		M5			M5			M5		
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	
Alternaria		1 1			1 1		1			
Ascospores				13	520	39	10	400	8	
Basidiospores	8	320	42	14	560	42	82	3280	67	
Bipolaris/Drechslera										
Chaetomium										
Cladosporium	1	40	5	3	120	9	1	40	<1	
Curvularia			-	1	40	3	13	520	11	
Epicoccum						-				
Cercospora				1	40	3				
Fusarium						-				
Memnoniella										
Nigrospora										
Penicillium/Aspergillus	9	360	47				12	480	10	
Polythrincium	-									
Rusts				1	40	3				
Smuts/Periconia/Myxomy						-	5	200	4	
Spegazzinia										
Stachybotrys										
Stemphylium										
Tetraploa										
Torula										
Ulocladium										
Colorless/Other Brown*		1								
Oidium										
Zygomycetes	1	40	5							
Pithomyces	•		-							
Background debris (1-5)**	3			3			3			
Sample Volume(liters)	25			25			25			
TOTAL SPORES/M ³	19	760		33	1320		123	4920		
Revisions:	10	100		00	1020		120	7020		

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory 102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Surface and Bulk Sample Report

	Surfa	ce and Bulk Samp	le Report	
			Date Sampled:	07/14/21
Attn: <i>Phoenix Enviro Corp.</i> Date Received				07/16/21
4020 Shipyard Blvd. Date Analyzed:				07/16/21
Wilmington, N	C 28403		Date Reported:	07/16/21
			Date Revised:	
			Project Name:	21-21-237-IAQ-M
			Project Address:	302 Grass Lane, Apt 103
			Project City, State ZIP:	Wilmington, NC 28405
			SEEML Reference #:	210716020
TEST METHOD: Direct Micro	oscopic Examination (SEEN	IL SOP 18)		
Client Sample ID	071421-PG-101	071421-PG-102		
Location	BIACK SVING/Dust On HVAC Supply Vent In The Bathroom	Black SVMG/Dust On HVAC Supply Vent In Rear Right Bedroom		
SEEML Sample ID	210716020-063	210716020-064		
Sample Type	Таре	Таре		
	Quantification*	Quantification*		
Hyphal Fragments				
Pollen	Scattered	Scattered		
General Impressions **	NFG	NFG		
Fungal Spore:	ND			
Alternaria				
Acremonium				
Ascospores				
Basidiospores				
Bipolaris/Drechslera				
Cercospora				
Chaetomium				
Cladosporium				
Curvularia				
Epicoccum				
Fusarium				
Geotrichum sp.				
Memnoniella				
Myxomycetes				
Nigrospora				
Penicillium/Aspergillus		Scattered Spores		
Pithomyces				
Rusts/Smuts				
Stemphylium				
Tetraploa				
Ulocladium				

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

_____g=___

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589 AIHA-LAP, LLC EMLAP # 173667 Texas License: LAB1016

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin
Acremonium crotocinigenum	Crotocin
Aspergillus favus	Alfatoxin B, cyclopiazonic acid
Aspergillus fumigatus	Fumagilin, gliotoxin
Aspergillus carneus	Critrinin
Aspergillus clavatus	Cytochalasin, patulin
Aspergillus Parasiticus	Alfatoxin B
Aspergillus nomius	Alfatoxin B
Aspergillus niger	Ochratoxin A, malformin, oxalicacid
Acremonium crotocinigenum	Crotocin
Aspergillus nidulans	Sterigmatocystin
Aspergillus ochraceus	Ochratoxin A, penicillic acid
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin
	Ausdiol, austamide,
Aspergillus ustus	austocystin, brevianamide
Aspergillus terreus	Citreoviridin
	Alternariol, altertoxin, altenuene, altenusin,
Alternaria	tenuazonic acid
Arthrinium	Nitropropionic acid
	Cytochalasin, sporidesmin,
Bioploaris	sterigmatocystin
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin
Cladosporium	Cladosporic acid
Clavipes purpurea	Ergotism
Cylindrocorpon	Trichothecene
Diplodia	Diplodiatoxin
Fusarium	Trichothecene, zearalenone
Fusarium moniliforme	Fumonisins
Emericella nidulans	Sterigmatocystin
Gliocladium	Gliotoxin
	Griseofulvin, dechlorogriseofulvin, epi-
Memnoniella	decholorgriseofulvin, trichodermin,
	trichodermol
Myrothecium	Trichothecene
Paecilomyces	Patulin, viriditoxin
Penicillium aurantiocandidum	Penicillic acid
Penicillium aurantiogriseum	Penicillic acid
Penicillium brasilanum	Penicillic acid
Penicillium brevicompactum	Mycophenolic acid
Penicillium camemberti	Cyclopiazonic acid
Penicillium carneum	Mycophenolic acid, Roquefortine C
Penicillium crateriforme	Rubratoxin

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

SITE: 302 Grass Lane, Apartment 103, Wilmington, NC

PEC Job #: 21-21-237A-IAQ-M December 23, 2021

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	December 23, 2021
For:	Quanesha Mullins Wilmington Housing Authority 1524 S. 16 th Street Wilmington, NC 28401
Remediation Contractor:	Not determined
On-Site Consultant:	Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Shoemong V finnchamed

Shaenaz Mirmohamed IH Technician

Tomm hu

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECTION 1.0 REMEDIATION PROCEDURES

1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	6
1.6	Post Remediation Verification Testing	6
SECTI	ON 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	7
SECTI	ON 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SECTI	ON 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	8
SECTI	ON 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SECTI	ON 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SECTI	ON 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	10
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 **Project Set Up**

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

SITE: 302 Grass Lane, Apartment 103, Wilmington, NC

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow.
- Once the HVAC system is shut down, the system shall remain off and isolated until acceptable post remediation results are obtained.

Note: For directional purposes "front" is determined by facing Green Lane from inside the residence, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation. All non-stable furnishings and contents shall be removed from the containment area/primary control area prior to specified remediation to avoid cross contamination of furnishings and contents. If elected, said furnishings and contents can be precleaned (i.e., HEPA vacuum, etc.) and stored in the primary control area, but shall be protected (i.e., covered with poly, etc.) to avoid cross contamination.

Within the kitchen/living room:

• Remove the ceiling drywall. The width of this removal shall be 10 feet beginning at the rear wall and extending towards the front wall. The length of this removal shall be 12 feet beginning at the left wall and extending towards the right wall.

Within the bathroom:

• Scrape the textured peeling paint from the ceiling until smooth to properly assess the ceiling drywall and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2- foot radius of the affected area when possible.

Within the kitchen/living room and the bathroom (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

- Clean all remaining surfaces as specified herein under general specifications for primary control areas.
- Areas of specified ceiling removal shall be sealed with poly (i.e., critical barrier) after cleaning, but before HEPA air scrubbing after cleaning, to prevent air flow from areas outside the containment area. An access door (i.e., poly flap taped in place, zipper, etc.) shall be installed in the critical barrier for easy access to conduct a visual inspection of the building materials behind the critical barrier.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- In areas where drywall removal is specified around windows and doors, remove trim boards. The door casing(s) shall also be assessed to determine if they have sustained mold/water damage. If so, they shall be cleaned, or removed.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.

- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.
- The remediation contractor shall document any drywall/wallboard that requires removal, in addition to the specified amount, prior to removal (i.e., drywall that is specified to be assessed by the remediation contractor, etc.). Documentation shall include photos and specific location at a minimum.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not re-contaminated (i.e., working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be placed in an enclosed container prior to transporting the material through the building and to the waste container, and prior to visual inspection by the CIEC/CIE/IH.

Areas shall be allowed to dry for a period until RH and moisture levels specified below have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter or equivalent), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% + /-3% (for all interior areas). The remediation contractor shall verify moisture content of all wooden and cellulosic building components within the impacted areas, as well as RH levels prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 25 hours (the equivalent of 100 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

SITE: 302 Grass Lane, Apartment 103, Wilmington, NC

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

Criteria for post remediation air sampling can be viewed in PEC's investigative report(s) listed in Section 2.1 below. This information can be found within the air sampling section of said report(s).

SECTION 2.0 SCOPE OF WORK (Note: Section 2.1 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp initial investigative report dated July 23, 2021.

Phoenix EnviroCorp investigative report dated December 23, 2021.

Phoenix EnviroCorp Chain of Custody dated July 14, 2021, and December 10, 2021.

Analytical reports dated July 16, 2021, and December 14, 2021.

2.2 **Project Description**

The procedures covered by this program/protocol include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by this program/protocol include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials shall be appropriately protected during the removal process to avoid exposure.

This program/protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close as possible to the date that this protocol was drafted, as the

specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it may become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 **Responsibilities of the CIEC/CIE/IH**

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no PELs or TLVs for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Post remediation sample results shall be available within seven (7) business days of the completion of collection and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e., brokenpipeline, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the SITE: 302 Grass Lane, Apartment 103, Wilmington, NC

potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste shall be transported to the landfill in such a way to ensure that it does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. This protocol shall be reviewed by the remediation contractor prior to initiation of set-up for the project. Any questions regarding this protocol shall be addressed with the generator or appropriate Phoenix EnviroCorp personnel.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, which may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods,

plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication

SITE: 302 Grass Lane, Apartment 103, Wilmington, NC

training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

The contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134. At a minimum, an N-95 dust mask shall be utilized.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

July 7, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-180A-IAQ-M – 302 Grass Lane, Unit 104, Wilmington, NC - Mold Investigation

Enclosed are the results of the mold investigation conducted at the above referenced unit on June 25, 2021. Phoenix EnviroCorp (PEC) was retained to conduct a mold investigation and provide a mold remediation protocol.

Background Information: PEC conducted a mold investigation on June 2, 2021, identifying elevated airborne mold spore levels within all sampled locations and apparent water damage within the unit.

This is a two-story apartment building on a slab. The subject unit is on the 1st floor and is vacant and without carpet.

The HVAC system was operating in the cool mode, set at 74° F upon PEC's arrival and during sampling.

Related Documents:

• PEC initial investigation report dated June 7, 2021

Note: For directional purposes "front" is determined by facing the park from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

Kitchen

- Apparent water damage and suspect visible mold growth within the rear floor mounted cabinet
- Apparent water damage within the front floor mounted cabinet
- Apparent water damage to the ceiling

Bathroom

- Suspect visible mold growth within the toilet tank
- Apparent water damage within the floor mounted cabinet
- Apparent water damage to the ceiling
- Apparent water damage to the baseboard on the front wall

Front left bedroom

• Apparent water damage to the ceiling

Mold Testing – Surface: Non-viable surface samples were collected from areas of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate

(M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

<u>Location</u> Floor mounted cabinet on the kitchen rear wall	<u>Result</u> L - FG Cladosporium VL – FG Penicillium/Aspergillus		
Bathroom toilet tank	M - FG Cladosporium M – FG Penicillium/Aspergillus		

Moisture Readings: Moisture readings were collected with either a Delmhorst moisture meter or a Tramex Survey Encounter. Multiple readings were taken to represent areas and materials reported. *Readings are marked with either a D or T to denote which meter was used.* For drywall products, readings should be less than or equal to twelve percent ($\leq 12\%$) by Delmhorst and below fifty percent (50%) by Tramex. For wood products, normal moisture content should be less than fifteen percent (<15%) for both meters.

Moisture content measurements were as follows:

<u>Kitchen</u>

- Wood cabinets = $\leq 10\%$ (D)
- Ceiling drywall = $\leq 10\%$ (T)

Bathroom

- Wood cabinets = $\leq 10\%$ (D)
- Ceiling drywall = $\leq 10\%$ (T)
- Wood baseboards = $\leq 10\%$ (D)

Front left bedroom

• Ceiling drywall = $\leq 10\%$ (T)

Conclusions: Surface mold growth and apparent water damage to building materials were identified within the unit, in addition to elevated airborne mold spore levels identified in PEC June 7, 2021's report. A mold remediation protocol that outlines remediation activities is attached.

Prior to commencement of mold remediation, the source of any water intrusions, leaks, and/or moisture/humidity issues shall be remedied. If water intrusions/moisture issues exist and are not remedied, mold can be expected to return.

After remediation activities are completed, but before put-back of removed components, post remediation verification shall be conducted. Upon notice, and for an additional fee, PEC can conduct post remediation verification testing.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

302 Grass Lane, Unit 104 Wilmington, NC 28405 Page 3 of 3

Thank you,

Shoenoz Virmchomed Shaenaz Mirmohamed

IH Technician

Enclosures

Tomm two

Tommie Green, CIEC Professional Industrial Hygienist

Apparent water damage in the kitchen floor mounted cabinet on the front wall

Photo 2

Apparent water damage in the kitchen floor mounted cabinet on the rear wall (right side)

Photo 3

Apparent water damage in the kitchen floor mounted cabinet on the rear wall (left side)

Apparent water damage to the kitchen ceiling

Apparent water damage to the bathroom ceiling

Suspect visible mold growth in the bathroom toilet tank

Apparent water damage to the bathroom cabinet

Apparent water damage to the ceiling in the front left bedroom

CHAIN OF CUSTODY

LABORATORY TEST REQUEST

Seem1 Ret # 210628030

ONTACT: Shaenaz Mirmohamed TELEPHONE (910) 397-0370 FAX (910) 313-6094			4	Lab 1D : 105 - 10 Sample date: 6/25/2021				
EC Job #: 21-21-180A-		SITE ADDRESS:	302 Grass Lane,	Unit 104, Wilm	nington, NC 284	05		
LEASE EMAIL RESULTS T	O: KMGREEN	PHOENIXENVIROCORP.COM NUMBER OF SAMPLES:		THE SPECIEIE	D.			
AMPLE TYPE: Spore Trap - Mic	70-5	NUMBER OF SAMPLES:	Immediate	TURN AROUND TIME SPECIFIED: Immediate 24 hr 48 hrX Standard				
Surface Samp	les	2	Innicoloce _					
Sandee Samp				T c l		0/ Deletive	Tamporatura	
Sample #		Sample		Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature °F	
062521-SM-01	Floor n	nounted cabinet on the kit	chen right wall	1 cm sq	S001T	NA	NA	
062521-SM-02		Bathroom toilet tan	k	1 cm sq	S001T	NA	NA	
		and well off our statements of						
	0	imples accep	ted					
		myrus neup						

Samples Collected By (Printed Name and Signature):

Shomon findhamed

Date Signed: 6/25/2021

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)	
6/25/2021 15:30 Intact		Intact	Stronger Kindianed	AFFILIATION:	21

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/28/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Surface and Bulk Sample Report

	Sulla	ce and Bulk Samp		00/05/04
			Date Sampled:	
Attn: Phoenix E			Date Received:	
4020 Shipyard			Date Analyzed:	
Wilmington, NO	C 28403		Date Reported:	06/28/21
			Date Revised:	
				21-21-180A-IAQ-M
			-	302 Grass Lane, Unit 104
			Project City, State ZIP:	
			SEEML Reference #:	210628030
TEST METHOD: Direct Micro	•	,		
Client Sample ID	062521-SM-01	062521-SM-02		
Location	Floor Mounted Cabinet On The Kitchen Right Wall	Bathroom Toilet Tank		
SEEML Sample ID	210628030-105	210628030-106		
Sample Type	Таре	Таре		
	Quantification*	Quantification*		
Hyphal Fragments		М		
Pollen				
General Impressions **	FG	FG		
Fungal Spore:				
Alternaria				
Acremonium				
Ascospores				
Basidiospores				
Bipolaris/Drechslera				
Cercospora				
Chaetomium				
Cladosporium	L	М		
Curvularia				
Epicoccum				
Fusarium				
Geotrichum sp.				
Memnoniella				
Myxomycetes				
Nigrospora				
Penicillium/Aspergillus	VL	М		
Pithomyces				
Rusts/Smuts				
Stemphylium				
Tetraploa				
Ulocladium				

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin
Acremonium crotocinigenum	Crotocin
Aspergillus favus	Alfatoxin B, cyclopiazonic acid
Aspergillus fumigatus	Fumagilin, gliotoxin
Aspergillus carneus	Critrinin
Aspergillus clavatus	Cytochalasin, patulin
Aspergillus Parasiticus	Alfatoxin B
Aspergillus nomius	Alfatoxin B
Aspergillus niger	Ochratoxin A, malformin, oxalicacid
Acremonium crotocinigenum	Crotocin
Aspergillus nidulans	Sterigmatocystin
Aspergillus ochraceus	Ochratoxin A, penicillic acid
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin
	Ausdiol, austamide,
Aspergillus ustus	austocystin, brevianamide
Aspergillus terreus	Citreoviridin
	Alternariol, altertoxin, altenuene, altenusin,
Alternaria	tenuazonic acid
Arthrinium	Nitropropionic acid
	Cytochalasin, sporidesmin,
Bioploaris	sterigmatocystin
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin
Cladosporium	Cladosporic acid
Clavipes purpurea	Ergotism
Cylindrocorpon	Trichothecene
Diplodia	Diplodiatoxin
Fusarium	Trichothecene, zearalenone
Fusarium moniliforme	Fumonisins
Emericella nidulans	Sterigmatocystin
Gliocladium	Gliotoxin
	Griseofulvin, dechlorogriseofulvin, epi-
Memnoniella	decholorgriseofulvin, trichodermin,
	trichodermol
Myrothecium	Trichothecene
Paecilomyces	Patulin, viriditoxin
Penicillium aurantiocandidum	Penicillic acid
Penicillium aurantiogriseum	Penicillic acid
Penicillium brasilanum	Penicillic acid
Penicillium brevicompactum	Mycophenolic acid
Penicillium camemberti	Cyclopiazonic acid
Penicillium carneum	Mycophenolic acid, Roquefortine C
Penicillium crateriforme	Rubratoxin

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:

July 7, 2021

For:

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

Remediation Contractor:

On-Site Consultant:

Not determined

Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Shoemong Minnchamed

Shaenaz Mirmohamed IH Technician

Tomm hu

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECT	FION 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	7
1.6	Post Remediation Verification Testing	7
SECT	FION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	7
SECT	FION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SECT	FION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	9
SECT	FION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SECT	FION 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SECT	TION 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	10
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute =Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

PEC Job #: 21-21-180A-IAQ-M

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow. Prior to isolating the vents, the register covers (diffusers) shall be removed, and the supply shall be isolated at the metal boot. Once isolated, the registers and surrounding building materials shall be cleaned.
- The interior of the air handler, rigid duct system, intake box, etc. shall be thoroughly cleaned by an HVAC professional experienced in mold remediation. The interior can be cleaned with mechanical methods that aggressively disturb all interior surfaces and filter the disturbed airborne particulates.

- Cleaning of components shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris.
- PEC recommends the removal and disposal of any fibrous or porous materials (i.e., insulation, etc.) from the interior of the HVAC system, to include but not limited to the air handler and rigid ductwork system. PEC also recommends that an HVAC professional design the re-insulation of the HVAC system without the use of porous interior insulation when possible.
- PEC recommends the removal and disposal of the flex ducts when feasible, as well as any interior duct • board where cleaning will damage the duct board. Once removed, the remediation contractor shall isolate the connection point where the flex duct and/or duct board was detached with a critical barrier (such as plastic, etc.) to prevent air flow.
- Once the HVAC system components are cleaned or replaced anew, the system shall remain off and isolated until acceptable post remediation results are obtained.
- A written document shall be obtained from the remediation contractor verifying that the HVAC system has been cleaned by an HVAC cleaning company with mold experience. This document shall include the property address and date of services and shall be filed with other mold remediation documents.

Note: For directional purposes "front" is determined by facing Grass Lane from inside the residence/building, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation.

Within the kitchen:

- Detach the floor mounted cabinet from the front and rear walls, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.
- Remove ceiling drywall. The width of this removal shall be 7 feet beginning at the front wall and extending to the rear wall. The length of this removal shall be 8 feet beginning at the left wall and extending to the right wall.

Within the bathroom:

- Detach the floor mounted cabinet and baseboard from the front wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.
- Remove ceiling drywall. The width of this removal shall be 3 feet beginning at the front wall and extending to the rear wall. The length of this removal shall be 8 feet beginning at the right wall and extending to the left wall.

Within the front left bedroom:

Remove ceiling drywall. The width of this removal shall be 7 feet beginning at the left wall and extending to the right wall. The length of this removal shall be 10 feet beginning at the rear wall and extending to the front wall.

Throughout the unit (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

- Clean all surfaces as specified herein under general specifications for primary control areas.
- Areas of specified ceiling removal shall be sealed with poly (i.e., critical barrier) after cleaning, but before HEPA air scrubbing after cleaning, to prevent air flow from areas outside the containment area. An access door (i.e., poly flap taped in place, zipper, etc.) shall be installed in the critical

barrier for easy access to conduct a visual inspection of the building materials behind the critical barrier.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not recontaminated (i.e. working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% + /-3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp initial investigative report dated June 7, 2021.

Phoenix EnviroCorp investigative report dated July 7, 2021.

Phoenix EnviroCorp Chain of Custody dated June 1, 2021, and June 25, 2021.

Analytical reports dated June 4, 2021, and June 28, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these

PEC Job #: 21-21-180A-IAQ-M

specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future exposures will not occur.

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number
- Location Sampled

- Analytical Method
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e. broken-pipe-line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2 nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

PEC Job #: 21-21-180A-IAQ-M

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as

required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

December 3, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-181A-IAQ-M – 302 Grass Lane, Unit 105, Wilmington, NC - Mold Investigation

Enclosed are the results of the mold investigation conducted at the above referenced unit on December 02, 2021. Phoenix EnviroCorp (PEC) was retained to conduct a mold investigation and provide a mold remediation protocol

Background Information: PEC conducted an investigation on June 1, 2021, identifying elevated airborne mold spore levels and surface mold growth to include *Chaetomium* withing the residence.

Note: There appears to have been additional damage (i.e., suspect visible mold growth/Apparent water damage) since PEC's initial investigation conducted on June 1, 2021. Additional investigative activities were conducted accordingly.

This is a two-story apartment building built on a slab. The subject unit is on the 1st floor, is vacant with miscellaneous contents throughout, and is without carpet.

The HVAC system was off upon PEC's arrival and during sampling.

Related Documents:

• PEC initial investigation report dated June 7, 2021

Note: For directional purposes "front" is determined by facing Grass Lane from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

The unit is vacant, but contents/trash were left in the unit. Kitchen

- Suspect visible mold growth on the interior and exterior of the kitchen cabinets
- Standing water on the floor

Living room

- Irregular/apparent water damage on the ceiling throughout
- Suspect visible mold growth on the contents (i.e., chairs, sofa, etc.)
- Water damage/hole on the rear wall
- Discoloration/suspect visible mold growth in the rear wall cavity

Bathroom

- Suspect visible mold growth/apparent water damage on the ceiling
- Suspect visible mold growth on the front wall

• Suspect visible mold growth in the cabinet on the front wall

Rear left bedroom

- Suspect visible mold growth in the closet on the front, right, rear, and left walls
- Suspect visible mold growth on the closet ceiling
- Suspect visible mold growth on the front right and right walls of the bedroom

Rear right bedroom

- Suspect visible mold growth on the contents left in the room
- Suspect visible mold growth in the closet on the rear left wall
- Suspect visible mold growth on the front left wall of the bedroom

Mold Testing – Surface: Non-viable surface samples were collected from areas of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

Location Inside of the floor-mounted cabinet in the kitchen	<u>Result</u> M – FG Chaetomium
Exterior of kitchen cabinets	H – FG Penicillium/Aspergillus
Living room rear wall cavity	VL – FG Basidiospores M – FG Chaetomium
Bathroom ceiling	H – FG Penicillium/Aspergillus

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the front right bedroom, the living room/kitchen, the rear right bedroom, the rear left bedroom, and the bathroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.*

Results identified elevated airborne levels of *Penicillium/Aspergillus* within all sampled locations, and *Stachybotrys* within the front right bedroom and the bathroom.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for *Penicillium/Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for Stachybotrys and Chaetomium; a*

other individual mold groups.

Moisture Readings: Moisture readings were collected with either a Delmhorst moisture meter or a Tramex Survey Encounter. Multiple readings were taken to represent areas and materials reported. *Readings are marked with either a D or T to denote which meter was used.* For drywall products, readings should be less than or equal to twelve percent ($\leq 12\%$) by Delmhorst and below fifty percent (50%) by Tramex. For wood products, normal moisture content should be less than fifteen percent (<15%) for both meters.

Moisture content measurements were as follows:

<u>Kitchen</u>

- Front drywall wall in cabinet = $\leq 10\%$ (D), wood cabinet on the front wall = $\leq 10\%$ (T)
- Wood baseboards = < 10% (D)

Living room

- Ceiling drywall = < 10% (T), wood baseboard on the front, left, and right walls = < 10% (D), wood baseboard on rear wall = $\le 15\%$ (D)
- Rear drywall wall = 10-40% (D)

<u>Bathroom</u>

- Ceiling drywall = 20-100% (T)
- Cabinet wood front wall = 25% (T), cabinet wood floorboard = 30% (T)
- Wood baseboards = 15-20% (D)

Rear left bedroom

- Ceiling drywall = 20-30% (T), drywall walls 20-40% (T)
- Front drywall wall 20-40% (T), right drywall walls = $\leq 20-40\%$ (T)

Rear right bedroom

- Drywall walls = < 20% (T), wood baseboards = < 10% (D)
- Drywall walls = $\leq 20\%$ (T), wood baseboards = $\leq 10\%$ (D)

<u>Hallway</u>

• Wood baseboards in the hallway = 23% (D), remaining baseboards = < 15% (D)

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the unit ranged from 68.6% – 70.8% with an outdoor reading of 43.3% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%. **Consistent RH levels above 60% are conducive to mold growth.**

Conclusions: Sample results identified elevated airborne mold spore levels, to include *Stachybotrys*, and surface mold growth, to include *Chaetomium*, in addition to apparent water damage within the residence. A mold remediation protocol that outlines remediation activities is attached.

Prior to commencement of mold remediation, the source of any water intrusions, leaks, and/or moisture/humidity issues shall be remedied. If water intrusions/moisture issues exist and are not remedied, mold can be expected to return.

After remediation activities are completed, but before put-back of removed components, post remediation verification shall be conducted. Upon notice, and for an additional fee, PEC can conduct post remediation verification testing.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Shoomoz Virmchomed Shaenaz Mirmohamed

IH Technician

Enclosures

Tomm hu

Tommie Green, CIEC Professional Industrial Hygienist

Suspect visible mold growth in the kitchen floor mounted cabinet on the front wall

Photo 2

Suspect visible mold growth on the kitchen cabinets

Suspect visible mold growth on the kitchen cabinets

Photo 4

Standing water on the kitchen floor

Apparent water damage on the living room ceiling

Photo 6

Suspect visible mold growth on furniture in the living room

Hole and suspect visible mold growth in the living room rear wall

Photo 8

Suspect visible mold growth on the bathroom front wall

Suspect visible mold growth in the bathroom cabinet

Photo 10

Suspect visible mold growth on the rear left bedroom closet ceiling

Suspect visible mold growth on the rear left bedroom closet walls

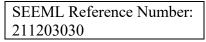
Photo 12

Suspect visible mold growth on the rear left bedroom front and front right walls

Suspect visible mold growth on the rear right bedroom rear left wall

Photo 14

Suspect visible mold growth on contents left in the rear right bedroom


-	Phoenix	
1	EnviroCorp	
.11	NEL MANUTORI, INC. SINGS	13

CHAIN OF CUSTODY

NTACT: Shaenaz Mirmol	hamed TELEPHONE (910) 397-0370	FAX (910) 313-6094	•	Sample date:	12/2/2021	104-
C Job #: 21-21-181A-IAQ		302 Grass Lane, L	Init 105, Wilr	nington, NC 284	05	
EASE EMAIL RESULTS TO: MPLE TYPE: Spore Trap - Micro- Surface Samples	KMGREEN@PHOENIXENVIROCORP.COM NUMBER OF SAMPLES: 5 7 8	TURN AROUND TI	ME SPECIFII	ED: 48 hrXS	itandard	
Sample #	Sample		Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature *F
120221-SM-101	Front right bedroom		25L	S001	68.7	68.2
120221-SM-102	Living room/kitchen		25L	S001	68.6	68.5
120221-SM-103	Rear right bedroom		25L	S001	70.7	67.5
120221-SM-104	Rear left bedroom		25L	S001	69.9	67.7
120221-SM-105	Bathroom			S001	70.8	76.8
120221-SM-106	Front yard			S001	43.3	76.6
120221-SM-107	Back yard Inside of the kitchen floor mounted cabinet on the front			S001		
120221-SM-01	wall			S001T	NA	NA
120221-SM-02	Exterior of kitchen cabine	ts	1 cm sq	S001T	NA	NA
120221-SM-03	Living room rear wall cavi	ty	1 cm sq	S001T	NA	NA
120221-5M-04	Bathroom ceiling	1 - 1 - 1	1 cm sq	S001T	NA	NA
120221-SM-05	Bathroom cabinet	an we have	1 cm sq	S001T	NA	NA
120221-SM-06	Bathroom front wall	1215	1 cm sq	S001T	NA	NA
120221-SM-07	Rear left bedroom closet w	1 cm sq	S001T	NA	NA	
120221-SM-08	Rear right bedroom front w	vall	1 cm sq	\$001T	NA	NA

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
12/2/2021	16:30	Intact	Showing Genchand AFFILIATION:	AFFILIATION: 2
				()

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 12/03/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			Opore	е пар ке		0	40/00/04		
						Sampled:			
Attn: Phoenix Env						Received:			
4020 Shipyard Bl				Date Analyzed: 12/03/21					
Wilmington, NC 2	28403			Date Reported: 12/03/21					
						e Revised:			
							21-21-181/		
								Lane, Unit 105	
					Project City,				
					SEEML Ref	erence # :	211203030)	
TEST METHOD: DIRECT M									
Client Sample ID	1	20221-SM-10)1	1	20221-SM-10)2	1	20221-SM-103	}
Location	Fro	ont Right Bedro	oom	Liv	ing Room/Kitcl	hen	Re	ear Right Bedroo	m
Lab Sample ID	2	11203030-10)4	2	11203030-10)5	2	211203030-106	
Comments									
Hyphal Fragments	3	120		2	80				
Pollen									
Spore Trap Used		M5			M5			M5	
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%
Alternaria		1 1			1 1				
Ascospores									
Basidiospores									
Bipolaris/Drechslera									
Chaetomium									
Cladosporium	1	40	2	1	40	<1			
Curvularia									
Epicoccum									
Cercospora									
Fusarium									
Memnoniella									
Nigrospora									
Penicillium/Aspergillus	27	1080	50	450	18000	100	90	3600	100
Polythrincium			-				-		
Rusts									
Smuts/Periconia/Myxomy									
Spegazzinia									
Stachybotrys	26	1040	48						
Stemphylium									
Tetraploa									
Torula									
Ulocladium									
Colorless/Other Brown*									
Oidium									
Zygomycetes									
Pithomyces									
Background debris (1-5)**	3			3			3		
Sample Volume(liters)	25			25			25	1	
TOTAL SPORES/M ³	54	2160		451	18000		90	3600	
Revisions:					10000				

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Augel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667

Texas Lic: LAB1016

Form 18.0 Rev 09 07/30/20

Spore Trap Report

· · · · · · · · · · · · · · · · · · ·			Shore	я ггар ке		0	40/00/04		
Attac Discourse Fra						Sampled:			
Attn: Phoenix Env						Received:			
4020 Shipyard Bl				Date Analyzed: 12/03/21					
Wilmington, NC 2	Wilmington, NC 28403				Date Reported: 12/03/21				
						e Revised:	04 04 404		
							21-21-181		
								Lane, Unit 105	
					Project City,				
					SEEML Ref	erence # :	211203030)	
TEST METHOD: DIRECT N						_			
Client Sample ID	1	20221-SM-10)4	1	20221-SM-10)5	1	20221-SM-106	
Location	Re	ear Left Bedroo	om		Bathroom			Front Yard	
Lab Sample ID	2	11203030-10	7	2	11203030-10	8	, , , , , , , , , , , , , , , , , , ,	211203030-109	
Comments									
Hyphal Fragments	3	120		2	80		3	120	
Pollen	-	<u> </u>							
Spore Trap Used		M5			M5			M5	
· · · · · · · · · · · · · · · · · · ·	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%
Alternaria			. •			. •			
Ascospores									
Basidiospores					1		8	320	38
Bipolaris/Drechslera									
Chaetomium					1				
Cladosporium	1	40	<1	1	40	<1	4	160	19
Curvularia	•		•	•		•		100	10
Epicoccum									
Cercospora					1				
Fusarium									
Memnoniella					1				
Nigrospora									
Penicillium/Aspergillus	132	5280	99	214	8560	99	9	360	43
Polythrincium		0200							
Rusts		1			1 1				
Smuts/Periconia/Myxomy					1				
Spegazzinia		1			1 1				
Stachybotrys				1	40	<1			
Stemphylium		1				-			
Tetraploa									
Torula									
Ulocladium									
Colorless/Other Brown*									
Oidium									
Zygomycetes									
Pithomyces									
Background debris (1-5)**	3			3			3		
Sample Volume(liters)	25			25			25		
TOTAL SPORES/M ³	133	5320		216	8640		21	840	
Revisions:	100	0020			0040		<u> </u>	040	

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667

Texas Lic: LAB1016

Form 18.0 Rev 09 07/30/20

Spore Trap Report

			Spore	гар ке			10/00/01		
						te Sampled:			
Attn: Phoenix Enviro Corp. Date Receive									
	4020 Shipyard Blvd. Date Analyze								
Wilmington, NC 28403 Date Reporte									
						ate Revised:			
						oject Name:			
								Lane, Unit 10	5
					Project City	, State, ZIP:	Wilmingto	n, NC 28405	
						eference # :	211203030)	
TEST METHOD: DIRECT M				EML SOP	7				
Client Sample ID	1:	20221-SM-10)7						
Location		Back Yard							
Lab Sample ID	2	11203030-11	10						
Comments									
Hyphal Fragments	1	40							
Pollen	1	40							
Spore Trap Used		M5							-
<u> </u>	raw ct.	spores/m ³	%						
Alternaria			. •					1	
Ascospores	2	80	11						
Basidiospores	10	400	56						
Bipolaris/Drechslera	10	100	00						
Chaetomium									
Cladosporium	3	120	17						
Curvularia	5	120	17						
Epicoccum									
Cercospora						-			
Fusarium									
Memnoniella									
Nigrospora	2	80	11						
Penicillium/Aspergillus	2	60	11						
Polythrincium Rusts									
	1	10	6						
Smuts/Periconia/Myxomy	1	40	6						
Spegazzinia Stachubatrua									
Stachybotrys									
Stemphylium									
Tetraploa									
Torula									
Ulocladium									
Colorless/Other Brown*									
Oidium									
Zygomycetes		ļ							
Pithomyces							_		
Background debris (1-5)**	3						L		
Sample Volume(liters)	25	-				1			
TOTAL SPORES/M ³	18	720							
Revisions:									

Revisions:

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Augel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667

Texas Lic: LAB1016

Form 18.0 Rev 09 07/30/20

Surface and Bulk Sample Report

	Sulla	e and bulk Sam	•	
			Date Sampled:	
Attn: Phoenix E	•		Date Received:	12/03/21
4020 Shipyard			Date Analyzed:	
Wilmington, N	C 28403		Date Reported:	12/03/21
	Date Revised:			
			Project Name:	21-21-181A-IAQ-M
			Project Address:	302 Grass Lane, Unit 105
			Project City, State ZIP:	Wilmington, NC 28405
			SEEML Reference #:	211203030
TEST METHOD: Direct Micro	oscopic Examination (SEEMI	L SOP 18)		
Client Sample ID	120221-SM-01	120221-SM-02	120221-SM-03	120221-SM-04
Location	Inside Of The Kitchen Floor Mounted Cabinet On the Floor Wall	Exterior Of Kitchen Cabinets	Living Room Rear Wall Cavity	Bathroom Ceiling
SEEML Sample ID	211203030-111	211203030-112	211203030-113	211203030-114
Sample Type	Таре	Таре	Таре	Таре
	Quantification*	Quantification*	Quantification*	Quantification*
Hyphal Fragments	L	М	VL	L
Pollen				
General Impressions **	FG	FG	FG	FG
Fungal Spore:				
Alternaria				
Acremonium				
Ascospores				
Basidiospores			VL	
Bipolaris/Drechslera				
Cercospora				
Chaetomium	М		М	
Cladosporium				
Curvularia				
Epicoccum				
Fusarium				
Geotrichum sp.				
Memnoniella				
Myxomycetes				
Nigrospora				
Penicillium/Aspergillus		Н		н
Pithomyces				
Rusts/Smuts				
Stemphylium				
Tetraploa				
Ulocladium				

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

 $\label{eq:Quantification} \ensuremath{\mathsf{Q}}\xspace{-1mu} \en$

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589

Surface and Bulk Sample Report

·	Sulla	ce and bulk Samp					
			Date Sampled:				
Attn: Phoenix Er	-		Date Received:				
4020 Shipyard I			Date Analyzed:				
Wilmington, NC	28403		Date Reported:	12/03/21			
	Date Revised:						
	Project N						
			Project Address:	302 Grass Lane, Unit 105			
			Project City, State ZIP:	Wilmington, NC 28405			
			SEEML Reference #:	211203030			
TEST METHOD: Direct Micros	scopic Examination (SEEM	L SOP 18)					
Client Sample ID	120221-SM-05	120221-SM-06	120221-SM-07	120221-SM-08			
Location	Bathroom Cabinet	Bathroom Front Wall	Rear Left Bedroom Closet Wall	Rear Right Bedroom Front Wall			
SEEML Sample ID	211203030-115	211203030-116	211203030-117	211203030-118			
Sample Type	Таре	Таре	Таре	Таре			
	Quantification*	Quantification*	Quantification*	Quantification*			
Hyphal Fragments	VL	М	м	М			
Pollen							
General Impressions **	FG	FG	FG	FG			
Fungal Spore:							
Alternaria							
Acremonium							
Ascospores							
Basidiospores	Μ						
Bipolaris/Drechslera							
Cercospora							
Chaetomium	VL						
Cladosporium							
Curvularia							
Epicoccum							
Fusarium							
Geotrichum sp.							
Memnoniella							
Myxomycetes							
Nigrospora							
Penicillium/Aspergillus			L				
Pithomyces				1			
Rusts/Smuts							
Rusts/Smuts Stachybotrys		M	M	Н			
Rusts/Smuts Stachybotrys Tetraploa		M	M	H			

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589 AIHA-LAP, LLC EMLAP # 173667 Texas License: LAB1016

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin			
Acremonium crotocinigenum	Crotocin			
Aspergillus favus	Alfatoxin B, cyclopiazonic acid			
Aspergillus fumigatus	Fumagilin, gliotoxin			
Aspergillus carneus	Critrinin			
Aspergillus clavatus	Cytochalasin, patulin			
Aspergillus Parasiticus	Alfatoxin B			
Aspergillus nomius	Alfatoxin B			
Aspergillus niger	Ochratoxin A, malformin, oxalicacid			
Acremonium crotocinigenum	Crotocin			
Aspergillus nidulans	Sterigmatocystin			
Aspergillus ochraceus	Ochratoxin A, penicillic acid			
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin			
	Ausdiol, austamide,			
Aspergillus ustus	austocystin, brevianamide			
Aspergillus terreus	Citreoviridin			
	Alternariol, altertoxin, altenuene, altenusin,			
Alternaria	tenuazonic acid			
Arthrinium	Nitropropionic acid			
	Cytochalasin, sporidesmin,			
Bioploaris	sterigmatocystin			
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin			
Cladosporium	Cladosporic acid			
Clavipes purpurea	Ergotism			
Cylindrocorpon	Trichothecene			
Diplodia	Diplodiatoxin			
Fusarium	Trichothecene, zearalenone			
Fusarium moniliforme	Fumonisins			
Emericella nidulans	Sterigmatocystin			
Gliocladium	Gliotoxin			
	Griseofulvin, dechlorogriseofulvin, epi-			
Memnoniella	decholorgriseofulvin, trichodermin,			
	trichodermol			
Myrothecium	Trichothecene			
Paecilomyces	Patulin, viriditoxin			
Penicillium aurantiocandidum	Penicillic acid			
Penicillium aurantiogriseum	Penicillic acid			
Penicillium brasilanum	Penicillic acid			
Penicillium brevicompactum	Mycophenolic acid			
Penicillium camemberti	Cyclopiazonic acid			
Penicillium carneum	Mycophenolic acid, Roquefortine C			
Penicillium crateriforme	Rubratoxin			

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

SITE: 302 Grass Lane, Apt 105, Wilmington, NC, 28405

PEC Job #: 21-21-181A-IAQ-M December 3, 2021

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	December 3, 2021
For:	Quanesha Mullins Wilmington Housing Authority 1524 S. 16 th Street Wilmington, NC 28401
Remediation Contractor:	Not determined
On-Site Consultant:	Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Shoenoz Minchamed

Shaenaz Mirmohamed IH Technician

Tomm New

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECTION 1.0 REMEDIATION PROCEDURES

1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	7
1.5	Cleanup Overview	8
1.6	Post Remediation Verification Testing	8
SECT	ION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	8
2.2	Project Description	9
SECT	ION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	9
3.2	Personal Monitoring	9
3.3	Sample Integrity and Reporting	10
SECT	ION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	10
SECT	ION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	10
SECT	ION 6.0 WASTE CONTROL	
6.1	Waste Disposal	10
SECT	ION 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	10
7.2	Definitions	11
7.3	Quality Assurance	13
7.4	Materials and Equipment	14

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

SITE: 302 Grass Lane, Apt 105, Wilmington, NC, 28405

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow. Prior to isolating the vents, the register covers (diffusers) shall be removed, and the supply shall be isolated at the metal boot. Once isolated, the registers and surrounding building materials shall be cleaned.
- The interior of the air handler, rigid duct system, intake box, etc. shall be thoroughly cleaned by an HVAC professional experienced in mold remediation. The interior shall be cleaned with mechanical methods that aggressively disturb all interior surfaces and filter the disturbed airborne particulates to avoid cross contamination, or other equivalent methods.
- Cleaning of components shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris.

- PEC recommends the removal and disposal of any fibrous or porous materials (i.e., insulation, etc.) from the interior of the HVAC system, to include but not limited to the air handler and rigid ductwork system. PEC also recommends that an HVAC professional design the re-insulation of the HVAC system without the use of porous interior insulation when possible.
- PEC recommends the removal and disposal of the flex ducts when feasible, as well as any interior duct board where cleaning will damage the duct board. Once removed, the remediation contractor shall isolate the connection point where the flex duct and/or duct board was detached with a critical barrier (such as plastic, etc.) to prevent air flow.
- The remediation contractor shall be responsible for coordinating the cleaning of the HVAC system and other specified remediation to avoid cross contamination.
- Once the HVAC system components are cleaned or replaced anew, the system shall remain off and isolated until acceptable post remediation results are obtained.
- A written document shall be obtained from the remediation contractor verifying that the HVAC system has been cleaned by an HVAC cleaning company with mold experience. This document shall include the property address and date of services and shall be filed with other mold remediation documents.

Note: For directional purposes "front" is determined by facing Green Lane from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation.

Within the kitchen:

- Detach and dispose of the floor-mounted cabinet from the front wall and remove the affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) beginning at the floor and extending 3 feet towards the ceiling. The width of this removal shall be 8 feet beginning at the left wall and extending toward the right wall.
- Remove vinyl floor tiles and thoroughly assess the floorboard for any apparent water damage/suspect visible mold growth and remove or clean the affected floorboard accordingly.

Within the living room:

- Remove the entire ceiling drywall (approximately 18-feet-by-13-feet).
- Remove drywall from the rear wall. The length of this removal shall be 4 feet beginning at the floor and extending toward the ceiling. The width of this removal shall be 8 feet beginning at the left wall and extending toward the right wall.

Within the bathroom:

- Detach the floor-mounted cabinet from the front wall and remove the affected drywall from the front wall (i.e., drywall with apparent water damage/suspect visible mold growth) beginning at the floor and extending toward the ceiling. The length of this removal shall be 5 feet beginning at the left wall and extending toward the right wall.
- Remove the ceiling drywall entirely (approximately 7.5-feet-by-4.5-feet).

Within the rear left bedroom:

• Remove the drywall from the front right wall, adjacent to the door. The length of this removal shall be 4 feet beginning at the floor and extending toward the ceiling. The width of this removal shall be the entire width of the front right wall (the front right wall adjacent to the door is less than 2 feet wide).

• Remove the drywall from the right wall. The length of this removal shall be 4 feet beginning at the floor and extending toward the ceiling. The width of this removal shall be approximately 4 feet beginning at the front wall and extending toward the rear.

Within the rear left bedroom closet:

- Remove the entire ceiling drywall (approximately 9-feet-by-2-feet).
- Remove drywall from the right wall beginning at the floor and extending 8 feet toward the ceiling. The width shall be approximately 9 feet beginning at the front wall and extending toward the rear wall.
- Remove drywall from the rear, front, and left walls entirely (8-feet-by-2-feet).

Within the rear right bedroom:

• Remove the drywall from the front left wall beginning at the floor and extending 4 feet towards the ceiling. The width of this removal shall be the entire width from the left wall to the right wall, adjacent to the door (≤ 2 feet).

Within the rear right bedroom closet:

• Remove the drywall from the rear wall. The length of this removal shall be 3 feet beginning at the floor and extending towards the ceiling. The width of this removal shall be 2 feet beginning at the left wall and extending towards the right wall.

Throughout the Residence (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

- Discard contents/trash (excluding appliances) or clean contents as specified herein under general specifications for primary control areas. Cleaning or discarding the contents shall be confirmed by the owners or powers that be.
- Clean all surfaces, furnishings and contents as specified herein under general specifications for primary control areas.
- Due to the apparent water damage and standing water in various locations, remove any loose floor tiles and thoroughly assess the floorboard for any apparent water damage/suspect visible mold growth and remove or clean the affected floorboard accordingly
- Remove the baseboards entirely from all walls in the unit allowing access to all walls, to thoroughly inspection the walls for apparent water damage/suspect visible mold growth. Remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2- foot radius of the affected area when possible
- Areas of specified ceiling removal shall be sealed with poly (i.e., critical barrier) after cleaning, but before HEPA air scrubbing after cleaning, to prevent air flow from areas outside the containment area. An access door (i.e., poly flap taped in place, zipper, etc.) shall be installed in the critical barrier for easy access to conduct a visual inspection of the building materials behind the critical barrier.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.

SITE: 302 Grass Lane, Apt 105, Wilmington, NC, 28405

- Non-porous, semi-porous, and porous furnishings and contents shall be cleaned. If items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be to determine if they shall be disposed.
- All machine washable porous cloth items shall be cleaned and dried in a household washer and dryer. Other specialty items shall be cleaned by a dry cleaner that specializes in cleaning materials affected with mold. These items shall be removed from affected area(s) and shall not be reintroduced back into the area(s) until acceptable post remediation testing is established. If porous articles cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- Mattresses shall be cleaned utilizing HEPA vacuuming, NOT by pressure extraction or wet methods. If suspect visible mold growth is on the mattress or if the mattress cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be prior to disposal.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- In areas where drywall removal is specified around windows and doors, remove trim boards. The door casing(s) shall also be assessed to determine if they have sustained mold/water damage. If so, they shall be cleaned, or removed.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.
- Furnishings and contents that are specified for cleaning shall be protected with polyethylene in areas where building components are specified for removal, prior to the removal of building components to avoid cross contamination. The protective covering shall be removed, and the furnishings and contents shall be cleaned prior to post visual inspection and testing.
- The remediation contractor shall document any drywall/wallboard that requires removal, in addition to the specified amount, prior to removal (i.e., drywall that is specified to be assessed by the remediation contractor, etc.). Documentation shall include photos and specific location at a minimum.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not re-contaminated (i.e., working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be placed in an enclosed container prior to transporting the material through the building and to the waste container, and prior to visual inspection by the CIEC/CIE/IH.

Areas shall be allowed to dry for a period until RH and moisture levels specified below have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter or equivalent), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% +/-3% (for all interior areas). The remediation contractor shall verify moisture content of all wooden and cellulosic building components within the impacted areas, as well as RH levels prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

Criteria for post remediation air sampling can be viewed in PEC's investigative report(s) listed in Section 2.1 below. This information can be found within the air sampling section of said report(s).

SECTION 2.0 SCOPE OF WORK (Note: Section 2.1 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp investigative report dated June 7, 2021, and December 3, 2021.

Phoenix EnviroCorp Chain of Custody dated June 1, 2021, and December 2, 2021.

Analytical reports dated June 2, 2021, and December 3, 2021.

2.2 **Project Description**

The procedures covered by this program/protocol include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by this program/protocol include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials shall be appropriately protected during the removal process to avoid exposure.

This program/protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close as possible to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it may become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no PELs or TLVs for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Post remediation sample results shall be available within seven (7) business days of the completion of collection and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e., broken-pipeline, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste shall be transported to the landfill in such a way to ensure that it does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. This protocol shall be reviewed by the remediation

SITE: 302 Grass Lane, Apt 105, Wilmington, NC, 28405

contractor prior to initiation of set-up for the project. Any questions regarding this protocol shall be addressed with the generator or appropriate Phoenix EnviroCorp personnel.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

PEC Job #: 21-21-181A-IAQ-M December 3, 2021

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, which may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic

examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

The contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134. At a minimum, an N-95 dust mask shall be utilized.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

June 10, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-182-IAQ-M - 302 Grass Lane Apartment 106, Wilmington, NC - Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on June 3, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling to determine airborne mold spore levels and to collect surface samples of suspect visible mold growth.

Background Information: The resident reported past leaks from plumbing in the bathroom and in the kitchen.

The unit is occupied and fully furnished with content throughout.

The HVAC system was off upon PEC's arrival and during sampling.

Note: For directional purposes "front" is determined by facing the parking lot off of Grass Lane from inside the building, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

- Apparent water damage within the kitchen cabinet underneath the sink
- Apparent water damage within the bathroom cabinet underneath the sink
- Apparent water damage on the ceiling in the bathroom
- Apparent water damage on the ceiling in the closet of the rear left bedroom
- No suspect visible mold growth observed.

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen/living room, the bathroom, the rear right bedroom, and the rear left bedroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.*

Results indicated acceptable levels of airborne mold spores in all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the unit ranged from 40.3% – 45.9% with an outdoor reading of 85.0% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%. Consistent RH levels above 60% can be conducive to mold growth.

Conclusions: Air sampling within the tested areas did not indicate a problem with the indoor air quality regarding mold and there was no surface mold growth identified. However, apparent water damage was noted. Upon request, and for an additional fee, PEC can conduct additional investigative activities to address the apparent water damage and provide a mold remediation protocol if needed.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

(allei Pum

Philip Green IH Technician

Enclosures

Tomme An

Tommie Green, CIEC Professional Industrial Hygienist

Photo 1

Apparent water damage in the kitchen cabinet underneath the sink

Photo 2

Apparent water damage in the bathroom cabinet underneath the sink

Photo 3

Apparent water damage on the ceiling in the rear left bedroom

Photo 4

Apparent water damage on the ceiling in the closet of the rear left bedroom

Samplus alla Afed

Phoenix EnviroCorp Hord BLVD WELMBURTON NC SHAD	Seem 1 Rest 210604025 101 095-098					
ONTACT: Philip Green	TELEPHONE (910) 397-0370	FAX (910) 313-6094		6/3/2021		
EC Job #: 21-21-182-IAQ-M	SITE ADDRESS:	302 Grass Lane, Apt. 106,	Wilmington,	NC 28405		
LEASE EMAIL RESULTS TO: KMGRH AMPLE TYPE: Spore Trap - Micro-5 Surface Samples	EEN@PHOENIXENVIROCORP.COM NUMBER OF SAMPLES: 4 0	TURN AROUND TIME SPE		nrX Standard		
Sample #	Sample Area		Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature °F
060321-PG-01	Kitchen/Living Ro	om	25L	S001	40.3	74.7
060321-PG-02	Bathroom		25L	S001	42.8	74.7
060321-PG-03	Rear Right Bedro	om	25L	S001	44.0	72.6
060321-PG-04	Rear Left Bedroo	om	25L	S001	45.9	71.8
			I	<u> </u>		<u> </u>

Samples Collected By (Printed Name and Signature):

Aller Sent

Date Signed: 6/3/2021

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/3/2021	14:30:00 PM	Intact	AFFILIATION:	AFFILIATION:

ATH OF OUR ----

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/04/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Snore Tran Report

			Spor	e Trap Re					
					Date	Sampled:	06/03/21		20
Attn: Phoenix Env	viro Corp.					Received:			
4020 Shipyard Bl						Analyzed:			
Wilmington, NC 2						Reported:	and the state of the second		
						e Revised:			
							21-21-182	-IAO-M	
				the second s				Lane, Apt 106	
					Project City, S				
					SEEML Ref				
TEST METHOD: DIRECT N	/ICROSC		ATION SE	EFMI SOP			21000402	5	
Client Sample ID		060321-PG-01	the second s		, 060321-PG-02	2	T	060321-PG-03	
				<u> </u>		2			
Location	Kite	chen / Living Ro	om		Bathroom		R	ear Right Bedroor	m
Lab Sample ID	2	210604025-09	5	2	10604025-09	6		210604025-097	
Comments									
Hyphal Fragments									
Pollen									
Spore Trap Used		M5			M5			M5	
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%
Alternaria					1				,0
Ascospores	7	280	14				3	120	13
Basidiospores	8	320	16	6	240	21	2	80	8
Bipolaris/Drechslera									
Chaetomium									
Cladosporium	17	680	35	9	360	32	9	360	38
Curvularia									
Epicoccum									
Cercospora									
Fusarium									
Memnoniella									
Nigrospora							235 S. (115)	Sector Active Western	
Penicillium/Aspergillus	17	680	35	13	520	46	10	400	42
Polythrincium				A second second					Section 1
Rusts									
Smuts/Periconia/Myxomy									
Spegazzinia									
Stachybotrys									
Stemphylium									
Tetraploa									and the second
Torula									
Ulocladium					Sector Sector				
Colorless/Other Brown*									
Didium					ALC: NO.	NO DANA			
Zygomycetes									
Pithomyces									
Background debris (1-5)**	3			3			3		
Sample Volume(liters)	25			25			25		
TOTAL SPORES/M ³	49	1960		28	1120		24	960	

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

Angel Gosnell

Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Texas Lic: LAB1016 Page 2 of 13

Spore Trap Report

			Spore T	rap Repor	t			
					Date Sampl	ed: 06/03/21	21	
Attn: Phoenix En	Date Received: 06/04/21							
4020 Shipyard B	lvd.			Date Analyzed: 06/04/21				
Wilmington, NC	28403				Date Report	and the second se		and the second second
				and the second second second second	Date Revis			
						ne: 21-21-18	32-IAO-M	
					Project Addre			06
				Proie	ct City, State, Z			
				SEE	ML Reference	#: 2106040	25	
TEST METHOD: DIRECT I	MICROSC	OPY EXAMIN	ATION SEEN					
Client Sample ID		060321-PG-04						
Location	К	ear Left Bedroo	m					
Lab Sample ID	2	10604025-098	3					
Comments								
Hyphal Fragments							T	
Pollen								
Spore Trap Used		M5						
	raw ct.	spores/m ³	%					
Alternaria								
Ascospores						2		
Basidiospores	2	80	7					
Bipolaris/Drechslera								
Chaetomium								
Cladosporium	12	480	41					
Curvularia								
Epicoccum								
Cercospora								
Fusarium						and Shares and		
Memnoniella								
Nigrospora								
Penicillium/Aspergillus	15	600	52					
Polythrincium								
Rusts								
Smuts/Periconia/Myxomy				A CONTRACTOR OF THE	and the second	•		
Spegazzinia								
Stachybotrys								No Contraction
Stemphylium								
Tetraploa								10 10 10 10 10 10 10 10 10 10 10 10 10 1
Torula								
Ulocladium								
Colorless/Other Brown*								
Oidium			and the second					
Zygomycetes								
Pithomyces								
Background debris (1-5)**	3							
Sample Volume(liters)	25							
TOTAL SPORES/M ³	29	1160						
Revisions:			the second second					

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell, Approved Laboratory Signatory

Angel Gosnell

Texas Lic: LAB1016 Page 3 of 13

Samples	allested		

Phoenix EnviroCorp 4020 SH#YARD BLVD, WILMINGTON, NC 28403	Seemi Ref # 210604	CHAIN OF CUSTODY LABORATORY TEST REQUEST MI ALD O Q<					
CONTACT: Philip Green	TELEPHONE (910) 397-037	0 FAX (910) 313-6094	1.0	6/3/2021	111	-	
PEC Job #: 21-21-182,183,184,185-I4	AQ-M SITE ADDRESS:	302 Grass Lane, Wilming					
PLEASE EMAIL RESULTS TO: KMGREEN SAMPLE TYPE:	@PHOENIXENVIROCORP.COM			5			
Spore Trap - Micro-5 Surface Samples	NUMBER OF SAMPLES: 2 0	TURN AROUND TIME SP	PECIFIED: 4 hr 48 h	r _X_ Standard			
Sample #	Sample Area		Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature "F	
060321-PG-701	Outside - Front		25L	S001	85.0	83.2	
060321-PG-702	Outside - Rear		25L	S001			
					_		
						1	
		-					
						in and the second	
		_					
	PLA 2 .				-		
	1.5						
nples Collected By (Printed Name and S	ignature):	Alex Berg	D	ate Signed:	6/3/2021	_	

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/3/2021	14:30:00 PM	Intact	Rauther	TA A.
			AFFILIATION:	AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/04/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			-	-	Date	e Sampled:	06/03/21		
Attn: Phoenix Enviro Corp.				Date Received: 06/04/21					
4020 Shipyard E	3lvd.				Date	Analyzed:	06/04/21		
Wilmington, NC	28403				Date	e Reported:	06/04/21		
					Dat	te Revised:			
					Pro	ject Name:	21-21-182	,183,184,185-	IAQ-M
					Proje	ct Address:	302 Grass	Lane	
					Project City,	State, ZIP:	Wilmingto	n, NC 28405	
					SEEML Re	ference # :	210604029	9	
TEST METHOD: DIRECT	MICROSCO	OPY EXAMIN	NATION SE	EML SOP	7				
Client Sample ID	0	60321-PG-7	01	060321-PG-702					
Location		Outside - Fror	nt	Outside - Rear					
Lab Sample ID	2	10604029-1	18	210604029-119					
Comments									
Hyphal Fragments				1	40				
Pollen	4	160		2	80				
Spore Trap Used		M5			M5				
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%			
Alternaria									
Ascospores	279	11200	73	51	2040	27			
Basidiospores	81	3240	21	27	1080	14			
Bipolaris/Drechslera									
Chaotomium									

Pollen	4	160		Ζ	80			
Spore Trap Used		M5			M5			
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%		
Alternaria								
Ascospores	279	11200	73	51	2040	27		
Basidiospores	81	3240	21	27	1080	14		
Bipolaris/Drechslera								
Chaetomium								
Cladosporium	9	360	2	78	3120	41		
Curvularia								
Epicoccum								
Cercospora								
Fusarium								
Memnoniella								
Nigrospora								
Penicillium/Aspergillus	7	280	2	30	1200	16		
Polythrincium								
Rusts	9	360	2	3	120	2		
Smuts/Periconia/Myxomy								
Spegazzinia								
Stachybotrys								
Stemphylium								
Tetraploa								
Torula								
Ulocladium								
Colorless/Other Brown*								
Oidium								
Zygomycetes								
Pithomyces								
Background debris (1-5)**	3			3				
Sample Volume(liters)	25			25				
TOTAL SPORES/M ³	385	15400		189	7560			

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory 102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin				
Acremonium crotocinigenum	Crotocin				
Aspergillus favus	Alfatoxin B, cyclopiazonic acid				
Aspergillus fumigatus	Fumagilin, gliotoxin				
Aspergillus carneus	Critrinin				
Aspergillus clavatus	Cytochalasin, patulin				
Aspergillus Parasiticus	Alfatoxin B				
Aspergillus nomius	Alfatoxin B				
Aspergillus niger	Ochratoxin A, malformin, oxalicacid				
Acremonium crotocinigenum	Crotocin				
Aspergillus nidulans	Sterigmatocystin				
Aspergillus ochraceus	Ochratoxin A, penicillic acid				
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin				
	Ausdiol, austamide,				
Aspergillus ustus	austocystin, brevianamide				
Aspergillus terreus	Citreoviridin				
	Alternariol, altertoxin, altenuene, altenusin,				
Alternaria	tenuazonic acid				
Arthrinium	Nitropropionic acid				
	Cytochalasin, sporidesmin,				
Bioploaris	sterigmatocystin				
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin				
Cladosporium	Cladosporic acid				
Clavipes purpurea	Ergotism				
Cylindrocorpon	Trichothecene				
Diplodia	Diplodiatoxin				
Fusarium	Trichothecene, zearalenone				
Fusarium moniliforme	Fumonisins				
Emericella nidulans	Sterigmatocystin				
Gliocladium	Gliotoxin				
	Griseofulvin, dechlorogriseofulvin, epi-				
Memnoniella	decholorgriseofulvin, trichodermin,				
	trichodermol				
Myrothecium	Trichothecene				
Paecilomyces	Patulin, viriditoxin				
Penicillium aurantiocandidum	Penicillic acid				
Penicillium aurantiogriseum	Penicillic acid				
Penicillium brasilanum	Penicillic acid				
Penicillium brevicompactum	Mycophenolic acid				
Penicillium camemberti	Cyclopiazonic acid				
Penicillium carneum	Mycophenolic acid, Roquefortine C				
Penicillium crateriforme	Rubratoxin				

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	July 1, 2021
For:	Quanesha Mullins Wilmington Housing Authority 1524 S. 16 th Street Wilmington, NC 28401
Remediation Contractor:	Not determined
On-Site Consultant:	Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Tomm two

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECT	TION 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	6
1.6	Post Remediation Verification Testing	6
SECT	TION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	7
SECT	TION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SECT	TION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	8
SECT	TION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SECT	TION 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SECT	TION 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	10
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

PEC Job #: 21-21-182A-IAQ-M

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow.
- Once the HVAC system is shut down, the system shall remain off and isolated until acceptable post remediation results are obtained.

Note: For directional purposes "front" is determined by facing Grass Lane from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation. All non-stable furnishings and contents shall be removed from the containment area/primary control area prior to specified remediation to avoid cross contamination of furnishings and contents. If elected, said furnishings and contents can be precleaned (i.e., HEPA vacuum, etc.) and stored in the primary control area, but shall be protected (i.e., covered with poly, etc.) to avoid cross contamination.

Within the rear left bedroom closet:

• Remove the entire drywall ceiling.

Within the bathroom:

- Remove the entire drywall ceiling.
- Detach and discard the floor mounted cabinet (with sink) from the front.
- Remove all baseboards from the front and left walls.
- Remove the toe molding along the bathtub.
- Detach the toilet.
- Remove an approximately 6-foot by 3-foot section of drywall from the front wall, beginning at the bathtub and extending to the left wall (approximately 6 feet); and beginning at the floor and extending up 3 feet.
- Remove an approximately 3-foot by 3-foot section of drywall from the left wall, beginning at the front wall and extending to the door (approximately 3 feet); and beginning at the floor and extending up 3 feet. Also remove the trim board from the front side of the door.
- Remove any loose floor tiles.

Within the kitchen:

- Detach the floor mounted cabinets associated with the sink along the left wall, and discard apparent water damaged components (i.e., cabinet floor, etc.).
- Assess the drywall uncovered by the removal of specified cabinet and remove any affected drywall (i.e., drywall with suspect visible mold growth/apparent water damage) and extend the drywall removal within a 2-foot radius of any affected areas when possible.
- Remove any loose floor tiles.

Within the rear bedroom, the bathroom, and the kitchen:

- Remove all contents from the containment area prior to commencement of other specified remediation.
- Clean all remaining surfaces within the containment areas as specified below under general specifications for primary control areas.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.

PEC Job #: 21-21-182A-IAQ-M

- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not recontaminated (i.e. working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% + /-3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

PEC Job #: 21-21-182A-IAQ-M

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp investigative report dated June 10, 2021, and July 1, 2021.

Phoenix EnviroCorp Chain of Custody dated June 3, 2021.

Analytical reports dated June 4, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future exposures will not occur.

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

PEC Job #: 21-21-182A-IAQ-M

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 **Responsibilities of the CIEC/CIE/IH**

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Analytical Method
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e. broken-pipe-

PEC Job #: 21-21-182A-IAQ-M

line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

PEC Job #: 21-21-182A-IAQ-M

IICRC S520 2 nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause

and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove			
Decc 12 of 13				

PEC Job #: 21-21-182A-IAQ-M

Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

June 10, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-183-IAQ-M - 302 Grass Lane Apartment 107, Wilmington, NC - Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on June 3, 2021 and June 15, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling to determine airborne mold spore levels and to collect surface samples of suspect visible mold growth.

Background Information: The tenant was concerned with mold growth/dust around the HVAC supply vents.

The unit is occupied and fully furnished with content throughout.

The HVAC system was operating in the cool mode, set at 73° F upon PEC's arrival and during sampling.

The surface sample collected from on/around the HVAC supply vent in the rear right bedroom on June 3 2021 was lost during transite, but recollected on June 15, 2021 at no additional charge.

Note: For directional purposes "front" is determined by facing the parking lot off Grass Lane from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

- Suspect visible mold growth in the kitchen cabinet underneath the sink.
- Suspect visible mold growth/dust on and around the HVAC supply vent in the rear right bedroom

Mold Testing – Surface: Non-viable surface samples were collected from areas of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

Location	<u>Result</u>
Kitchen cabinet underneath the sink	Scattered Spores – Basidiospores
On/around the HVAC supply vent in the rear right bedroom	Scattered Spores – Cladosporium

Scattered Spores – Penicillium/Aspergillus

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen/living room, the bathroom, the rear right bedroom, and the rear left bedroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.*

Results indicated acceptable levels of airborne mold spores in all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the residence ranged from 71.0% - 72.8% with an outdoor RH level of 85.0% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%. **Consistent RH levels above 60% is conducive to mold growth.**

Conclusions: Air sampling within the tested areas did not indicate a problem with the indoor air quality regarding mold, and no fungal growth or apparent water damage was identified.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Alie Rum

Philip Green IH Technician

Tomm ton

Tommie Green, CIEC Professional Industrial Hygienist

Enclosures

Photo 1

Suspect visible mold growth in the kitchen cabinet underneath sink.

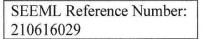
Photo 2

Dust/suspect visible mold growth on and around the HVAC supply vent in rear right bedroom

CHAIN OF CUSTODY

LABORATORY TEST REQUEST

CONTACT: Philip Green PEC Job #: 21-21-183A-IAQ-M		TELEPHONE (910) 397-0370 FAX (910) 313-6094		Lab IP'. 097 6/15/2021			
		SITE ADDRESS: 302 Grass Lane, Apt. 107, Wilmington, NC 28405					
PLEASE EMAIL RESULTS SAMPLE TYPE: Spore Trap - M	TO: KMGREE	N@PHOENIXENVIROCORP.COM NUMBER OF SAMPLES: 0	TURN AROUND TIME SPE	CIFIED:		 I	
Surface Sam	ples	1			· · · · · · · · · · · · · · · · · · ·		
Sample #		Sample Area		Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature *F
061521-PG-301	Suspect vi	sible mold growth/dust arou in the rear right r		1 cm sq	S001T	Hamaly	
						and the second	
	-						
-				Sa	mpy	all	ept
					V		and a second
Sector Sector		and the second					
		and the second					


Samples Collected By (Printed Name and Signature):

Rection

Date Signed: 6/15/2021

CHAIN OF CUSTODY RECORD

Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/15/2021 15:30:00 PM		AFELI LATION:	AFFILIATION:
		Samples:	Time: Samples: (Printed Name and Signature)

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/16/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Surface and Bulk Sample Report

r	Surrac	and Bulk Sample Report	
		Date Sampled: 06	
Attn: Phoenix I		Date Received: 06	/16/21
4020 Shipyard	l Blvd.	Date Analyzed: 06	/16/21
Wilmington, N	C 28403	Date Reported: 06	/16/21
		Date Revised:	
······ ····· ····· ······ ············	-21-183A-IAQ-M		
		Project Address: 302	2 Grass Lane, Apt 107
		Project City, State ZIP: Wi	Imington, NC 28405
		SEEML Reference #: 21	0616029
TEST METHOD: Direct Micr	oscopic Examination (SEEML	SOP 18)	
Client Sample ID	061521-PG-301		
Location	Suspect VISIBLE Mold Growth / Dust Around The HVAC Supply Vent In The		
SEEML Sample ID	210616029-097		
Sample Type	Tape		
	Quantification*		
Hyphal Fragments	Scattered		
Pollen			
General Impressions **	NFG		
Fungal Spore:			
Alternaria			
Acremonium			
Ascospores			
Basidiospores			
Bipolaris/Drechslera			
Cercospora			
Chaetomium			
Cladosporium	Scattered Spores		
Curvularia			
Epicoccum			
Fusarium			
Geotrichum sp.			
Memnoniella			
Myxomycetes			
Nigrospora			
Penicillium/Aspergillus	Scattered Spores		
Pithomyces			
Rusts/Smuts			
Stemphylium			
Tetraploa			
Ulocladium			

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

gal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589 AIHA-LAP, LLC EMLAP # 173667

Texas License: LAB1016

Samples alleafed

CHAIN OF CUSTODY

LABORATORY TEST REQUEST

CONTACT: Philip Green	TELEPHONE (910) 397-0370 FAX (910) 313-6094) - ()94 6/3/2021	And Andrewson and Antonio a	
PEC Job #: 21-21-183-IAQ-M	SITE ADDRESS: 302 Grass Lane, Ar	I. 107, Wilmington,	NC 28405		
PLEASE EMAIL RESULTS TO: KMGF	REEN@PHOENIXENVIROCORP.COM		NC 20103		
SAMPLE TYPE: Spore Trap - Micro-5 Surface Samples	NUMBER OF SAMPLES: TURN AROUND TII 4 Immediate 1	ME SPECIFIED: 24 hr48 1	nrX Standard		
Sample #	Sample Area	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature "F
060321-PG-101	Kitchen/Living Room	25L	S001	71.3	74.5
060321-PG-102	Bathroom	25L	S001	71.3	71.3
060321-PG-103	Rear Right Bedroom	25L	S001	72.8	74.9
060321-PG-104	Rear Left Bedroom	25L	S001	71.0	74.7
060321-PG-201	Black VSMG in kitchen cabinet underneath sink	1 cm sq	S001T		
			and the second		
					-

Samples Collected By (Printed Name and Signature):

Alle Parn

Date Signed: 6/3/2021

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/3/2021	14:30:00 PM	Intact	AFFILIATION:	AFFILIATION:

SEEML Reference Number: 210604024

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

 \boxtimes

Surface/Bulk Report Spore Trap Report

1	=

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/04/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			Spo	re Trap R	eport				
					Date	Sample	d: 06/03/21		
Attn: Phoenix En							d: 06/04/21		
4020 Shipyard B						the second s	d: 06/04/21		1. Anna
Wilmington, NC	28403						d: 06/04/21	1975) Sama Sama Sama Sama Sama Sama Sama Sam	
						e Revised			
							e: 21-21-183		
					Projec	t Address	: 302 Grass	Lane, Apt 107	
				····	Project City,	State 71	. Wilmington	NC 28405	
					SEEML Ref	orence #	: 210604024	1, NC 20405	
TEST METHOD: DIRECT I	MICROSC	OPY EXAMIN	ATION S	FEMI SOP	7		. 210004024	+	
Client Sample ID		060321-PG-10			60321-PG-10	2	1 7	000001 DC 400	
						2		060321-PG-103	
Location	Kite	chen / Living Ro	om		Bathroom		Re	ear Right Bedroor	n
Lab Sample ID	2	210604024-09	0	2	10604024-09	1		210604024-092	
Comments						974 			
Hyphal Fragments								1	
Pollen					1				
Spore Trap Used		M5			M5		62	M5	And the second second
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	0/
Alternaria				1		/0		spores/m	%
Ascospores	4	160	14	1	40	9	1	40	
Basidiospores	3	120	11	3	120	27		40	11
Bipolaris/Drechslera					120	<u> </u>			ALCONTRACTOR
Chaetomium									
Cladosporium	17	680	61	4	160	36		100	
Curvularia					100		4	160	44
Epicoccum		Constanting of the							
Cercospora							hand a strength		
Fusarium					and the second s			NAME OF COMPANY OF COMPANY	
Memnoniella									
Nigrospora								The second s	
Penicillium/Aspergillus	4	160	14	3	120	07			
Polythrincium		100	14	5	120	27	4	160	44
Rusts									
Smuts/Periconia/Myxomy									
Spegazzinia									
Stachybotrys									the second second
Stemphylium		-							
Tetraploa		N. C. Start			Sugar State State State				
Forula									
Jlocladium									
Colorless/Other Brown*									
Didium									
Zygomycetes									
Pithomyces			STRUCTURES						
Background debris (1-5)**	2			0					
Sample Volume(liters)	25			2			3		
TOTAL SPORES/M ³	28	1120		25			25		
evisions:	20	1120		11	440		9	360	

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell, Approved Laboratory Signatory

Angel Gosnell

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20

Texas Lic: LAB1016 Page 2 of 14

Snore Tran Report

			Spore	rap Report				
					Date Sampled	d: 06/03/21	Contraction of the providence of	
	Attn: Phoenix Enviro Corp.					d: 06/04/21		
4020 Shipyard E					Date Analyzed			
Wilmington, NC	n, NC 28403 Date Reported: 06/04/21							
					Date Revised			
					Project Name		3 IAO M	
				F	Project Address	: 302 Gras	s lang Ant 10	7
				Project	City, State, ZIF	· Wilmingto	$\frac{3}{10}$ NC 28405	17
				SEEM	Reference #	· 2106040	DA	
TEST METHOD: DIRECT	MICROSC	OPY EXAMIN	ATION SEE	IL SOP 7		. 21000402	-7	
Client Sample ID		60321-PG-10				1		
Location		See news						
	R	ear Left Bedroo	m					
Lab Sample ID	2	10604024-09	3					
Comments								
Hyphal Fragments								
Pollen							1	
Spore Trap Used	-	M5					-	and a second
	raw ct.	spores/m ³	%					
Alternaria	2	80	18					1
Ascospores	3	120	27					
Basidiospores	2	80	18					
Bipolaris/Drechslera						STATES AND A		
Chaetomium								
Cladosporium	4	160	36		AND REPORTS	a section of the section		v Kasta Salara
Curvularia					•			
Epicoccum								
Cercospora								
Fusarium							a state gate of the	1
Memnoniella								Contraction of the
Nigrospora					NAME AND ADDRESS OF ADD	Contract of the		
Penicillium/Aspergillus								an an territori da ana an
Polythrincium								
Rusts								
Smuts/Periconia/Myxomy						and the second	Case of the second second	
Spegazzinia								
Stachybotrys						Care Contractor		
Stemphylium								
Tetraploa			and a second second					
Torula								
Jlocladium								
Colorless/Other Brown*								TELEVISION OF THE
Didium								
Zygomycetes								
Pithomyces								
Background debris (1-5)**	3							
Sample Volume(liters)	25							
TOTAL SPORES/M ³	11	440						

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell, Approved Laboratory Signatory

Angel Gosnell

Texas Lic: LAB1016 Page 3 of 14

Surface and Bulk Sample Report

	Garra	ce and bulk Sample Report				
	Date Sampled					
Attn: Phoenix		Date Received:	06/04/21			
4020 Shipyard		Date Analyzed:	06/04/21			
Wilmington, N	IC 28403	Date Reported:	06/04/21			
		Date Revised:				
		Project Name:	21-21-183-IAQ-M			
		Project Address:	302 Grass Lane, Apt 107			
		Project City, State ZIP:				
		SEEML Reference #:				
TEST METHOD: Direct Micr	oscopic Examination (SEEM	. SOP 18)				
Client Sample ID	060321-PG-201					
Location	Black VSMG In Kitchen Cabinet Underneath Sink					
SEEML Sample ID	210604024-094					
Sample Type	Таре					
	Quantification*					
Hyphal Fragments	Single					
Pollen	Single					
General Impressions **	NFG					
Fungal Spore:						
Alternaria						
Acremonium						
Ascospores						
Basidiospores	Scattered Spores					
Bipolaris/Drechslera						
Cercospora						
Chaetomium						
Cladosporium						
Curvularia						
Epicoccum						
Fusarium						
Geotrichum sp.						
Vemnoniella						
Myxomycetes						
Nigrospora						
Penicillium/Aspergillus						
Pithomyces						
Rusts/Smuts						
Stemphylium						
Fetraploa						
Jlocladium						

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

H =

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589 AIHA-LAP, LLC EMLAP # 173667 Texas License: LAB1016

Samples	allested		

Phoenix EnviroCorp 4020 SH#YARD BLVD, WILMINGTON, NC 28403	Seemi REF# 210604	CHAIN OF CUST LABORATORY TEST RI	EQUEST	ID: 118 ~ 6/3/2021	119	
CONTACT: Philip Green	TELEPHONE (910) 397-037	0 FAX (910) 313-6094	1.0	6/3/2021	111	-
PEC Job #: 21-21-182,183,184,185-I4	AQ-M SITE ADDRESS:	302 Grass Lane, Wilming				
PLEASE EMAIL RESULTS TO: KMGREEN SAMPLE TYPE:	@PHOENIXENVIROCORP.COM			5		
Spore Trap - Micro-5 Surface Samples	NUMBER OF SAMPLES: 2 0	TURN AROUND TIME SP	PECIFIED: 4 hr 48 h	r _X_ Standard		
Sample #	Sample Area		Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature "F
060321-PG-701	Outside - Front		25L	S001	85.0	83.2
060321-PG-702	Outside - Rear		25L	S001		
						-2
					_	
						1
		-				
						in the second
	PLA 2 .				-	
	1.5					
nples Collected By (Printed Name and S	ignature):	Alex Berg	D	ate Signed:	6/3/2021	_

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/3/2021	14:30:00 PM	Intact	Rauther	TA A.
			AFFILIATION:	AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/04/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			-	-	Date	e Sampled:	06/03/21		
Attn: Phoenix Er	viro Corp.			Date Received: 06/04/21					
4020 Shipyard E	3lvd.				Date	Analyzed:	06/04/21		
Wilmington, NC	28403				Date	e Reported:	06/04/21		
					Dat	te Revised:			
					Pro	ject Name:	21-21-182	,183,184,185-	IAQ-M
					Proje	ct Address:	302 Grass	Lane	
					Project City,	State, ZIP:	Wilmingto	n, NC 28405	
					SEEML Re	ference # :	210604029	9	
TEST METHOD: DIRECT	MICROSCO	OPY EXAMIN	NATION SE	EML SOP	7				
Client Sample ID	060321-PG-701		060321-PG-702						
Location		Outside - Front		Outside - Rear					
Lab Sample ID	2	10604029-1	18	210604029-119					
Comments									
Hyphal Fragments				1	40				
Pollen	4	160		2	80				
Spore Trap Used		M5		M5					
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%			
Alternaria									
Ascospores	279	11200	73	51	2040	27			
Basidiospores	81	3240	21	27	1080	14			
Bipolaris/Drechslera									
Chaotomium									

Pollen	4	160		Ζ	80			
Spore Trap Used		M5			M5			
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%		
Alternaria								
Ascospores	279	11200	73	51	2040	27		
Basidiospores	81	3240	21	27	1080	14		
Bipolaris/Drechslera								
Chaetomium								
Cladosporium	9	360	2	78	3120	41		
Curvularia								
Epicoccum								
Cercospora								
Fusarium								
Memnoniella								
Nigrospora								
Penicillium/Aspergillus	7	280	2	30	1200	16		
Polythrincium								
Rusts	9	360	2	3	120	2		
Smuts/Periconia/Myxomy								
Spegazzinia								
Stachybotrys								
Stemphylium								
Tetraploa								
Torula								
Ulocladium								
Colorless/Other Brown*								
Oidium								
Zygomycetes								
Pithomyces								
Background debris (1-5)**	3			3				
Sample Volume(liters)	25			25				
TOTAL SPORES/M ³	385	15400		189	7560			

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory 102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin			
Acremonium crotocinigenum	Crotocin			
Aspergillus favus	Alfatoxin B, cyclopiazonic acid			
Aspergillus fumigatus	Fumagilin, gliotoxin			
Aspergillus carneus	Critrinin			
Aspergillus clavatus	Cytochalasin, patulin			
Aspergillus Parasiticus	Alfatoxin B			
Aspergillus nomius	Alfatoxin B			
Aspergillus niger	Ochratoxin A, malformin, oxalicacid			
Acremonium crotocinigenum	Crotocin			
Aspergillus nidulans	Sterigmatocystin			
Aspergillus ochraceus	Ochratoxin A, penicillic acid			
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin			
	Ausdiol, austamide,			
Aspergillus ustus	austocystin, brevianamide			
Aspergillus terreus	Citreoviridin			
	Alternariol, altertoxin, altenuene, altenusin,			
Alternaria	tenuazonic acid			
Arthrinium	Nitropropionic acid			
	Cytochalasin, sporidesmin,			
Bioploaris	sterigmatocystin			
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin			
Cladosporium	Cladosporic acid			
Clavipes purpurea	Ergotism			
Cylindrocorpon	Trichothecene			
Diplodia	Diplodiatoxin			
Fusarium	Trichothecene, zearalenone			
Fusarium moniliforme	Fumonisins			
Emericella nidulans	Sterigmatocystin			
Gliocladium	Gliotoxin			
	Griseofulvin, dechlorogriseofulvin, epi-			
Memnoniella	decholorgriseofulvin, trichodermin,			
	trichodermol			
Myrothecium	Trichothecene			
Paecilomyces	Patulin, viriditoxin			
Penicillium aurantiocandidum	Penicillic acid			
Penicillium aurantiogriseum	Penicillic acid			
Penicillium brasilanum	Penicillic acid			
Penicillium brevicompactum	Mycophenolic acid			
Penicillium camemberti	Cyclopiazonic acid			
Penicillium carneum	Mycophenolic acid, Roquefortine C			
Penicillium crateriforme	Rubratoxin			

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

302 Grass Lane, Unit 108 Wilmington, NC 28401 Page 1 of 2

April 14, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-113-IAQ-M; 302 Grass Lane, Unit 108, Wilmington, NC – Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on April 13, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling and to collect surface samples of suspect visible mold growth.

Background Information: The tenant reported mold growth in the hallway bathroom and in the kitchen cabinet.

The HVAC system was operating in the heat mode, set at 72° F upon PEC's arrival and during sampling.

Note: For directional purposes, "front" is determined by facing Grass Lane from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

- Suspect visible mold growth on the rear wall in the bathroom
- Suspect visible mold growth within the kitchen cabinet on the rear wall

Mold Testing – Surface: Non-viable surface samples were collected from areas of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

Location	Result
Bathroom rear wall	ND – NFG

Kitchen cabinet

Scattered Spore *Penicillium/Aspergillus*

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within kitchen/living room, the front bedroom, the bathroom, the rear right bedroom, and the rear left bedroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID*

number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.

Results indicated acceptable levels of airborne mold spores in all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the unit ranged from 54.1% - 58.1% with an outdoor RH level of 49.3% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%.

Conclusions: Air sampling within the tested areas did not indicate a problem with the indoor air quality regarding mold, and there was no fungal growth identified. However, scattered spores were identified on the kitchen cabinet.

PEC recommends cleaning the suspect visible mold growth and any like areas with an over-thecounter product designed specifically for cleaning mold growth. Such a product can be purchased at most hardware stores, and the manufacturer's instructions shall be followed.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Shoenoz Minchamed

Shaenaz Mirmohamed IH Technician

Enclosures

Tomm have

Tommie Green, CIEC Professional Industrial Hygienist

Photo 1

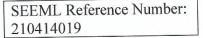

Suspect visible mold growth on the rear wall in the bathroom

Photo 2

Suspect visible mold growth on the rear cabinets in the kitchen

Phoenix EnviroCol	0			LABORATORY TE	ST REQUEST			
AD20 SHIPYARD BLVD. WILMINGTON, NC 28403		CIAMI DA	5# 2/04		10	6 ED: 05:	3-159	
ONTACT: Shaena	z Mirmoh		EPHONE (910)	397-0370 FAX (910) 313-6094	ł	Sample date:	4/13/2021	
	-		E ADDRESS:	302 Grass Lane, U		ngton, NC 2840)1	
PEC Job #: 21-21-2 PLEASE EMAIL RESUL	TS TO	MCREEN@PHC	FNIXENVIROCO	DRP.COM				
SAMPLE TYPE:		INUI	MBER OF SAMPI 5	ES: TURN AROUND T	IME SPECIFIEL	48 hrX S	tandard	
Spore Trap Surface S	- Micro- Samples		2					1
	1		and the second se	Sample	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperatur "F
Sample #				Area	25L	S001	54.1	72.8
041321-SM-20	1		Kitchen/livi	ng room		-	55.6	72.5
041321-SM-20	2		Front be	droom	25L	5001		72.7
041321-SM-20	3 4		Bathro	oom	25L	S001	55.6	
041321-SM-20	14 ~		Rear right	bedoom	25L	S001	58.1	71.2
041321-SM-20			Rear left	bedroom	25L	S001	57.9	71.9
			Bathroom		1 cm sq	S001T	NA	NA
041321-SM-20					1 cm sq	S001T	NA	NA
041321-SM-20	<u>)7 °</u>		Kitchen	Cabinet				
				_				
Samples Collected	By /Drin	ted Name and S	Signature):	Sheenes Minchamed		Date Signe	ed: 4/13/2	021
Samples Collected	L OY (FIII			AIN OF CUSTODY R	ECORD			
		Condition of		RELINQUISHED BY:		A	CCEPTED BY:	ature)
DATE:	Time:	Samples:	(Prin	ted Name and Signature)		1.2	lame and Sigr	lature)
		1	1	Shomes Vimbared	1	VH 41-11	1 .	

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for Phoenix Enviro Corp. has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

<u>Angel Gosnell</u>

Date: 04/14/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

	opore map nopore
	Date Sampled: 04/13/21
Attn: Phoenix Enviro Corp.	Date Received: 04/14/21
4020 Shipyard Blvd.	Date Analyzed: 04/14/21
Wilmington, NC 28403	Date Reported: 04/14/21
Winnington, No 20100	Date Revised:
	Project Name: 21-21-113-IAQ-M
	Project Address: 302 Grass Lane, Unit 108
	Project City, State, ZIP: Wilmington, NC 28401
	SEEML Reference #: 210414019

ODOCCODY EXAMINATION SEEMI SOP 7

Client Sample ID	IICROSCOPY EXAMINATION SEE 041321-SM-201			04	041321-SM-202			041321-SM-203		
	Kito	Kitchen / Living Room			Front Bedroom		Bathroom			
Lab Sample ID	2	10414019-053	h.	2	10414019-054		210414019-055			
Comments			or							
Hyphal Fragments	4	160		1	40		2	80		
Pollen	2	80					1	40		
Spore Trap Used	6	M5		RIN.	M5			M5		
Spore map used	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	
Alternaria	1000 01.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Ascospores	4	160	33	1	40	8				
Basidiospores	4	160	33	1	40	8	2	80	33	
Bipolaris/Drechslera										
Chaetomium										
Cladosporium	2	80	17	4	160	31	3	120	50	
Curvularia										
Epicoccum										
Cercospora				1	40	8				
Fusarium										
Memnoniella										
Nigrospora										
Penicillium/Aspergillus	2	80	17	6	240	46	1	40	17	
Polythrincium										
Rusts										
Smuts/Periconia/Myxomy						il in the second se				
Spegazzinia										
Stachybotrys										
Stemphylium										
Tetraploa						Sec. Se				
Torula										
Ulocladium										
Colorless/Other Brown*										
Oidium						1. Carl				
Zygomycetes										
Pithomyces							-		1	
Background debris (1-5)**	3			3			3			
Sample Volume(liters)	25			25			25		T	
TOTAL SPORES/M ³	12	480		13	520		6	240		

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell

Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20

Texas Lic: LAB1016

Page 2 of 14

Spore Trap Report

	opore map nopore
	Date Sampled: 04/13/21
Attn: Phoenix Enviro Corp.	Date Received: 04/14/21
4020 Shipyard Blvd.	Date Analyzed: 04/14/21
Wilmington, NC 28403	Date Reported: 04/14/21
Winnington, No 20100	Date Revised:
	Project Name: 21-21-113-IAQ-M
	Project Address: 302 Grass Lane, Unit 108
	Project City, State, ZIP: Wilmington, NC 28401
	SEEML Reference #: 210414019

CODV EXAMINATION SEEMI SOD 7

Client Sample ID	ICROSCOPY EXAMINATION SEE 041321-SM-204			04	41321-SM-20	5		
	Re	ar Right Bedroor	m	Re	Rear Left Bedroom			
_ab Sample ID	2	10414019-056	;	2	10414019-057	7		
Comments								
Hyphal Fragments				3	120			
Pollen	8	320						
Spore Trap Used		M5			M5			
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%		
Alternaria								
Ascospores	10	400	22					
Basidiospores	22	880	49	3	120	75		
Bipolaris/Drechslera								
Chaetomium	and the second second second							
Cladosporium	12	480	27	1	40	25		
Curvularia								
Epicoccum								
Cercospora								
Fusarium								
Memnoniella								
Nigrospora								And the second second
Penicillium/Aspergillus	1	40	2					
Polythrincium								
Rusts								
Smuts/Periconia/Myxomy								
Spegazzinia								
Stachybotrys								
Stemphylium								
Tetraploa								
Torula								
Ulocladium	-							
Colorless/Other Brown*								
Oidium							a sawa a sawa a sawa	
Zygomycetes								
Pithomyces								
Background debris (1-5)**	3			3				
Sample Volume(liters)	25			25				1
TOTAL SPORES/M ³	45	1800		4	160			

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20

Texas Lic: LAB1016

Page 3 of 14

Surface and Bulk Sample Report

	Surfa	ce and Bulk Samp		
			Date Sampled:	
Attn: Phoenix Er	viro Corp.		Date Received:	04/01/21
4020 Shipyard E			Date Analyzed:	
Wilmington, NC			Date Reported:	04/01/21
			Date Revised:	
			Project Name:	21-21-113-IAQ-M
			Project Address:	302 Grass Lane, Unit 108
			Project City, State ZIP:	Wilmington, NC 28401
			SEEML Reference #:	210414019
EST METHOD: Direct Micros	scopic Examination (SEEM	IL SOP 18)		
Client Sample ID	041321-SM-206	041321-SM-207		
		Kitchen Cabinot		
Location	Bathroom Rear Wall	Kitchen Cabinet		
SEEML Sample ID	210414019-058	210414019-059		
Sample Type	Таре	Таре		
	Quantification*	Quantification*		
Hyphal Fragments				
Pollen		Single		
General Impressions **	NFG	NFG		
Fungal Spore:	ND			
Alternaria				
Acremonium				
Ascospores				
Basidiospores				
Bipolaris/Drechslera				
Cercospora				
Chaetomium				
Cladosporium				
Curvularia				
Epicoccum				
Fusarium				
Geotrichum sp.				
Memnoniella				
Myxomycetes				
Nigrospora				
Penicillium/Aspergillus		Scattered Spore		
Pithomyces				
Rusts/Smuts				
Stemphylium				
Tetraploa				
Ulocladium				

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589 AIHA-LAP, LLC EMLAP # 173667 Texas License: LAB1016

Form 46.0 Rev 6 01/21/20 Page 4 of 14

Phoenix EnviroCorp 4020 SHIPVARD BLVD. WILMINGTON, NC 28403	Seeme NS#210414018		T FD:05		
CONTACT: Shaenaz Mirmoha	med TELEPHONE (910) 397-0370 FAX (910) 313	-6094	Sample date:	4/13/2021	
PEC Job #: 21-21-113, 114, &1	116-IAQ-M SITE ADDRESS: 302 Grass L	ane, Units 210, 21	1, & 108, Wilmir	ngton, NC 284	01
PLEASE EMAIL RESULTS TO: KI SAMPLE TYPE: Spore Trap - Micro-5 Surface Samples		ND TIME SPECIFI		Standard	
Sample #	Sample Area	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperatu *F
041321-SM-301	Outside - Front - 2nd floor	25L	S001	49.3	70.5
041321-SM-302	Outside - Front - 1st floor	25L	S001		
					-
	<i></i>				
		_			-
					_
					+

CHAIN OF CUSTODY RECORD

ACCEPTED BY: (Printed Name and Signature) RELINQUISHED BY: (Printed Name and Signature) Condition of DATE: Time: Samples: Shooning M e. ed 4/13/2021 14:00 4-14-21 JN Intact AFFILIATION: AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 04/14/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

							: 04/13/21		
Attn: Phoenix Enviro Corp.				Date Received: 04/14/21					
4020 Shipyard	Blvd.				Date	Analyzed	: 04/14/21		
Wilmington, N	C 28403				Date	Reported	: 04/14/21		
					Dat	e Revised	:		
					Pro	ject Name	: 21-21-113	3, 114, & 116-I	AQ-M
					Projec	t Address	:302 Grass L	ane, Units 210,21	1, & 108
					Project City,	State, ZIP	: Wilmingto	on, NC 28401	
					SEEML Ret	ference #	: 21041401	8	
TEST METHOD: DIRECT	MICROSCO	OPY EXAMIN	NATION SE	EML SOP	7				
Client Sample ID	0	41321-SM-3	01	041321-SM-302					
Location	Outsid	de - Front - 2n	d Floor	Outside - Front - 1st Floor					
Lab Sample ID	2	10414018-0	51	210414018-052			1		
Comments									
Hyphal Fragments	4	160							
Pollen	29	1160							
Spore Trap Used		M5			M5				
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%			
Alternaria									
Ascospores	122	4880	31	10	400	17			

19

30

1

760

1200

40

32

50

2

TOTAL SPORES/M ³	390	15600	60	2400			
Revisions:							
Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore.							
The analytical sensitivity is the spores/m ³ divided by the raw count, expressed in spores/m ³ . The limit of detection is the analytical sensitivity (in spores/m ³) multiplied by the							
sample volume (in liters) divided by	1000 liters.						

3

25

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

142

125

1

3

25

5680

5000

40

36

32

<1

Augel Gosnell Angel Gosnell, Approved Laboratory Signatory

Basidiospores

Chaetomium

Cladosporium Curvularia Epicoccum Cercospora Fusarium Memnoniella Nigrospora

Polythrincium

Spegazzinia Stachybotrys Stemphylium Tetraploa Torula Ulocladium

Rusts

Oidium Zygomycetes Pithomyces

Bipolaris/Drechslera

Penicillium/Aspergillus

Smuts/Periconia/Myxomy

Colorless/Other Brown*

Background debris (1-5)**

Sample Volume(liters)

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin					
Acremonium crotocinigenum	Crotocin					
Aspergillus favus	Alfatoxin B, cyclopiazonic acid					
Aspergillus fumigatus	Fumagilin, gliotoxin					
Aspergillus carneus	Critrinin					
Aspergillus clavatus	Cytochalasin, patulin					
Aspergillus Parasiticus	Alfatoxin B					
Aspergillus nomius	Alfatoxin B					
Aspergillus niger	Ochratoxin A, malformin, oxalicacid					
Acremonium crotocinigenum	Crotocin					
Aspergillus nidulans	Sterigmatocystin					
Aspergillus ochraceus	Ochratoxin A, penicillic acid					
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin					
	Ausdiol, austamide,					
Aspergillus ustus	austocystin, brevianamide					
Aspergillus terreus	Citreoviridin					
	Alternariol, altertoxin, altenuene, altenusin,					
Alternaria	tenuazonic acid					
Arthrinium	Nitropropionic acid					
	Cytochalasin, sporidesmin,					
Bioploaris	sterigmatocystin					
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin					
Cladosporium	Cladosporic acid					
Clavipes purpurea	Ergotism					
Cylindrocorpon	Trichothecene					
Diplodia	Diplodiatoxin					
Fusarium	Trichothecene, zearalenone					
Fusarium moniliforme	Fumonisins					
Emericella nidulans	Sterigmatocystin					
Gliocladium	Gliotoxin					
	Griseofulvin, dechlorogriseofulvin, epi-					
Memnoniella	decholorgriseofulvin, trichodermin,					
	trichodermol					
Myrothecium	Trichothecene					
Paecilomyces	Patulin, viriditoxin					
Penicillium aurantiocandidum	Penicillic acid					
Penicillium aurantiogriseum	Penicillic acid					
Penicillium brasilanum	Penicillic acid					
Penicillium brevicompactum	Mycophenolic acid					
Penicillium camemberti	Cyclopiazonic acid					
Penicillium carneum	Mycophenolic acid, Roquefortine C					
Penicillium crateriforme	Rubratoxin					

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	May 4, 2021
For:	Quanesha Mullins Wilmington Housing Authority 1524 S. 16 th Street Wilmington, NC 28401
Remediation Contractor:	Rhino Demolition 1664 American Way Little River, SC 29577
On-Site Consultant:	Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370
Approved Signatory:	

Tomm ton

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECT	FION 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	6
1.6	Post Remediation Verification Testing	6
SECT	FION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	7
SECT	FION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	7
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SECT	FION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	8
SECT	FION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	8
SECT	FION 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SECT	TION 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	9
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow.
- Once the HVAC system is shut down, the system shall remain off and isolated until acceptable post remediation results are obtained.

Note: For directional purposes "front" is determined by facing Grass Lane from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the kitchen as a Primary Control Area to perform the specified mold remediation.

Within the kitchen:

- Detach the floor mounted cabinets along the front wall (i.e., cabinets associated with the sink) and discard all water damaged components (i.e., cabinet floor, etc.) or the entire cabinet.
- Assess the walls uncovered by detaching the cabinets and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of any affected areas when possible.

Throughout the unit (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

• Clean all surfaces, furnishings, and contents within the primary control area, as well as all areas listed in PEC's initial investigative report dated April 14, 2021 (under visual inspection) with suspect visible mold growth, and any like areas, as specified below under general specifications for primary control areas.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Non-porous, semi-porous, and porous furnishings and contents shall be cleaned. If items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be to determine if they shall be disposed.
- All machine washable porous cloth items shall be cleaned and dried in a household washer and dryer. Other specialty items shall be cleaned by a dry cleaner that specializes in cleaning materials affected with mold. These items shall be removed from affected area(s) and shall not be reintroduced back into the area(s) until acceptable post remediation testing is established. If porous articles cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- All wall cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.

- In areas of specified wallboard removal, all components within the wall cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.
- Furnishings and contents that are specified for cleaning shall be protected with polyethylene in areas where building components are specified for removal, prior to the removal of building components to avoid cross contamination. The protective covering shall be removed, and the furnishings and contents shall be cleaned prior to post visual inspection and testing.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not recontaminated (i.e. working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% + /-3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the

discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp investigative report dated April 14, 2021.

Phoenix EnviroCorp mold remediation cover letter report dated May 4, 2021.

Phoenix EnviroCorp Chain of Custody dated April 13, 2021.

Analytical reports dated April 14, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future exposures will not occur.

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Analytical Method
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e. broken-pipe-line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2 nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential

Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and

cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by

29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove					
Sodium Hypochlorite	Neoprene or Nitrile					
Phenolic Compounds	Neoprene					
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)					

Detergents Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

May 19, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28405

RE: PEC Job # 21-121-120A-IAQ-M - 302 Grass Lane, Unit 110, Wilmington, NC - Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on May 13, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling to determine airborne mold spore levels and to collect surface samples of suspect visible mold growth.

Background Information: The HVAC system was operating in the cool mode, set at 69° F upon PEC's arrival and during sampling.

This is a vacant unit without furnishings or carpet.

Note: For directional purposes "front" is determined by facing Grass Lane from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

- Suspect visible mold growth on several HVAC supply vents
- Suspect visible mold growth on the rear left bedroom closet wall
- Apparent water damage to the living room ceiling
- Apparent water damage/hole in the rear right bedroom ceiling
- Apparent water damage to the bathroom front wall baseboard

Mold Testing – Surface: Non-viable surface samples were collected from areas of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

<u>Location</u>	<u>Result</u>
Rear left bedroom closet right wall	M – FG Penicillium/Aspergillus
Kitchen HVAC supply vent	VL – MFG Penicillium/Aspergillus

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the rear left bedroom, the rear right bedroom, the bathroom, and the kitchen/living room. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute*

for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.

Results indicated acceptable airborne mold spore levels within all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Moisture Readings: Moisture readings were collected with either a Delmhorst moisture meter or a Tramex Survey Encounter. Multiple readings were taken to represent areas and materials reported. *Readings are marked with either a D or T to denote which meter was used.* For drywall products, readings should be less than or equal to twelve percent ($\leq 12\%$) by Delmhorst and below fifty percent (50%) by Tramex. For wood products, normal moisture content should be less than fifteen percent (<15%) for both meters.

Moisture content measurements were as follows:

Living room

• Drywall ceiling = $\leq 20\%$ (T)

<u>Kitchen</u>

• Wood cabinet = $\leq 10\%$ (D)

Bathroom

• Wood baseboard on the front wall = <10% (D)

Rear right bedroom

• Ceiling drywall = $\leq 20\%$ (T)

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the unit ranged from 42.4% – 45.6% with an outdoor reading of 39.4% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%.

Conclusions: Air sampling did not indicate a problem with the indoor air quality regarding mold. However, surface mold growth was identified within the residence, as well as apparent water damage. Upon request, and for an additional fee, PEC can conduct additional investigative activities and provide a mold remediation protocol to address visible surface mold growth and apparent water damage/potential hidden mold growth.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

302 Grass Lane, Unit 110 Wilmington, NC 28405 Page 3 of 3

Should you have any questions, please do not hesitate to call. Thank you,

Shownong Virmchamed Shaenaz Mirmohamed

IH Technician

Enclosures

Tomm two

Tommie Green, CIEC Professional Industrial Hygienist

Photo 1

Apparent water damage to the living room ceiling

Photo 2

Apparent water damage to the bathroom front wall baseboard

Photo 3

Photo 4

Apparent water damage within the kitchen sink cabinet

Suspect visible mold growth on the rear left bedroom closet right wall (adjacent to the water heater)

Photo 5

Apparent water damage to the ceiling/hole in the rear right bedroom

CONTACT: Shaenaz PEC Job #: 21-21-12	CONTACT: Shaenaz Mirmohamed PEC Job #: 21-21-120A-IAQ-M PLEASE EMAIL RESULTS TO: KMGREEI		CHAIN OF CUSTODY LABORATORY TEST REQUEST See M/ AS # JUS JUO 15 (46 JD:05 - 059 TELEPHONE (910) 397-0370 FAX (910) 313-6094 Sample date: 5/13/2021 SITE ADDRESS: 302 Grass Lane, Unit 110, Wilmington, NC 28405					
SAMPLE TYPE: Spore Trap -	Micro-5	6 2	TIME SPECIFIED: 24 hr48 hrXStandard					
Sample #		Sam Are	4-0. V/2	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature 'F	
051321-SM-201		Rear left bedro	<u>om</u>	25L	S001	44.9	70.6	
051321-SM-202		Rear right bedro	oom	25L	S001	45.6	70.6	
051321-SM-203		Bathroom		25L	<u>S00</u> 1	44.2	70.7	
051321-SM-204		Kitchen/living ro	25L	S001	42.4	70.5		
051321-SM-205		Outside - From	25L	S001	39.4	73.0		
051321-SM-206		Outside - Rea	ar	25L	S001			
050321-SM-207		Rear left bedroom close	1 cm sq	S001T	ŇĂ	NA		
050321-5M-208		Kitchen HVAC supp	ly vent	1 cm sq	S001T	NA	NA	
			42 ¹⁷					
10 1	k,		1 1 × 110	· •				
				- U.				
	and a second sec			5 B				

Samples Collected By (Printed Name and Signature): Summer formanned Date Signed: 5/13/2021

na Americana a re Finisiana filme in

.

• 10 A

9 - C. 200-

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
5/13/2021	16:00	Intact	. Bassing Formational	JH 514-11
1			AFFILIATION:	AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 05/14/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			oport	з пар ке		Sampled	· 05/13/21				
Attn: Phoenix Env	Date Sampled: 05/13/21 Date Received: 05/14/21										
4020 Shipyard Blvd.					Date Analyzed: 05/14/21						
Wilmington, NC 2				Date Reported: 05/14/21							
	20400					e Revised					
				Project Name: 21-21-120A-IAQ-M							
								Lane, Unit 110			
					Project City,						
							21051401				
TEST METHOD: DIRECT M	MICROSCO	OPY EXAMIN	ATION SE	EML SOP				-			
Client Sample ID		51321-SM-20			51321-SM-20)2	()51321-SM-203	5		
Location	Re	ear Left Bedroo	om	Re	ar Right Bedro	om		Bathroom			
Lab Sample ID	2	10514015-05	52	2	10514015-05	i3		210514015-054			
Comments			<i>,</i> <u> </u>		10011010 00						
Hyphal Fragments		1		l							
Pollen		+			┼───┤						
Spore Trap Used		M5			I M5			M5			
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%		
Alternaria		300163/111	70		spores/m	70		spores/m	70		
Ascospores	1	40	25	1	40	25	1	40	11		
Basidiospores	1	40	25	1	40	20	2	80	22		
Bipolaris/Drechslera							2	00	22		
Chaetomium											
Cladosporium	2	80	50	3	120	75	4	160	44		
Curvularia	2	00	50	3	120	75	4	100	44		
Epicoccum											
Cercospora											
Fusarium											
Memnoniella					-						
Nigrospora											
Penicillium/Aspergillus	1	40	25		-		2	80	22		
Polythrincium		70	20				4		~~		
Rusts		1									
Smuts/Periconia/Myxomy											
Spegazzinia											
Stachybotrys											
Stemphylium											
Tetraploa											
Torula											
Ulocladium											
Colorless/Other Brown*											
Oidium											
Zygomycetes											
Pithomyces											
Background debris (1-5)**	3			3		_	3				
Sample Volume(liters)	25			25			25	1			
TOTAL SPORES/M ³	4	160		4	160		9	360			
Revisions:	4	100		4	100		9	500			

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667

Texas Lic: LAB1016

Spore Trap Report

		opore	e Trap Re	•				
8403								
				Project City,	State, ZIP:	: Wilmingtor	n, NC 28405	
				SEEML Ref	erence # :	21051401	5	
IICROSCC	OPY EXAMIN	ATION SE	EML SOP	7				
0	51321-SM-20)4	0	51321-SM-20)5	()51321-SM-206	
Kito	chen/Living Ro	om		Outside - Fron	t		Outside - Rear	
2	10514015-05	55	2	10514015-05	6		210514015-057	
					-	1		
	1 1			1		2	80	
			3	120				
	I M5		5					
row of		0/	row of		0/	row of		%
						Taw CL	spores/m	70
-						7	000	
								9
2	80	20	20	800	19	25	1000	32
3	120	30	59	2360	56	44	1760	56
2	80	20						
1	40	10				2	80	3
			1	40	<1			
3			3			3		
10	400		105	4200		78	3120	
	0 Kita 2 raw ct. 1 2 3 3 2 1	vd. 18403 IICROSCOPY EXAMIN 051321-SM-20 Kitchen/Living Ro 210514015-05 M5 raw ct. spores/m ³ 1 40 1 40 2 80 3 120 3 120 3 120 1 40 2 80 3 120 1 40 1 40 2 80 3 120 3 120 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	vd. 8403 IICROSCOPY EXAMINATION SE 051321-SM-204 Kitchen/Living Room 210514015-055 raw ct. spores/m ³ % 1 40 10 1 40 10 2 80 20 3 120 30 3 120 30 2 80 20 4 1 4 1 4 1 5 120 30 5 120 5	vd. BAU3 IICROSCOPY EXAMINATION SEEML SOP 051321-SM-204 0 Kitchen/Living Room	iro Corp. Date vd. Date 8403 Date 8403 Date Bate Date Project Project Project City, . SEEML Ref IICROSCOPY EXAMINATION SEEML SOP 7 Outside - Fron 051321-SM-204 Outside - Fron 210514015-055 210514015-055 raw ct. spores/m³ M5 M5 raw ct. spores/m³ 1 40 10 2 80 20 20 3 120 30 59 2360 2 80 20 20 800 2 80 20 20 80 2 80 20 20 80 2 80 20 20 80 2 80 20 20 260 2 80 20 20 260 1 40 10 1 40<	Date Received date Analyzed Bate Reported Date Revised Date Revised Project Name Project Name Project Name Project Name Project Name Project Name SEEML Reference # : ICROSCOPY EXAMINATION SEEML SOP 7 051321-SM-204 051321-SM-205 Kitchen/Living Room Outside - Front 210514015-055 210514015-056 M5 Taw ct. spores/m³ % 1 40 10 3 120 3 1 40 10 22 880 21 2 80 20 20 800 19 3 120 30 59 2360 56 2 80 20 2 60 2 2 80 20 2 60 2 <	vd. Date Analyzed: 05/14/21 18403 Date Reported: 05/14/21 Date Revised: Project Name: 21-21-120. Project Address: 302 Grass Project Address: 302 Grass Project Address: 302 Grass Project Address: 302 Grass Project State, ZIP: Wilmingtor SEEML Reference #: 210514015 ICROSCOPY EXAMINATION SEEML SOP 7 051321-SM-204 051321-SM-205 (0) 051321-SM-204 051321-SM-205 (0) (1) 210514015-055 210514015-056 2 2 max ct. spores/m ³ % raw ct. spores/m ³ % raw ct. spores/m ³ % raw ct. spores/m ³ % raw ct. 1 40 10 3 120 3 120 3 1 40 10 22 880 21 7 2 80 20 20 800 19 25 3 120 30 59 2360 56 44 1 40 1 40 1 2 1 2 80	ino Corp. Date Received: 05/14/21 vd. Date Analyzed: 05/14/21 8403 Date Revised: Project Name: 21-21-120A-IAQ-M Project Name: 21-21-120A-IAQ-M Project Address: 302 Grass Lane, Unit 110 Project Address: 302 Grass Lane, Unit 110 Project Address: 302 Grass Lane, Unit 110 Recent State, ZIP: Wilmington, NC 28405 SEEML Reference # : 210514015 ICROSCOPY EXAMINATION SEEML SOP 7 051321-SM-204 051321-SM-205 051321-SM-206 Kitchen/Living Room Outside - Front Outside - Rear 210514015-055 210514015-056 210514015-057 max ct. spores/m ³ % raw ct. spores/m ³ raw ct. spores/m ³ % raw ct. spores/m ³ 1 40 10 3 120 3 2 80 20 20 800 19 25 1000 3 120 30 59 2360 56 44 1760

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore.

The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667

Texas Lic: LAB1016

Form 18.0 Rev 09 07/30/20

Surface and Bulk Sample Report

	Julia	ce and Bulk Samp		/ - /	
			Date Sampled:		
Attn: Phoenix Enviro Corp.			Date Received:		
4020 Shipyard		Date Analyzed:			
•			Date Reported:	05/14/21	
			Date Revised:		
				21-21-120A-IAQ-M	
			-	302 Grass Lane, Unit 110	
			Project City, State ZIP:		
	SEEML Reference #: 210514015				
	TEST METHOD: Direct Microscopic Examination (SEEML SOP 18)				
Client Sample ID	050321-SM-207	050321-SM-208			
Location	Rear Left Bedroom Closet Right Wall	Kitchen HVAC Supply Vent			
SEEML Sample ID	210514015-058	210514015-059			
Sample Type	Tape	Таре			
	Quantification*	Quantification*			
Hyphal Fragments	Scattered				
Pollen		Scattered			
General Impressions **	FG	MFG			
Fungal Spore:					
Alternaria					
Acremonium					
Ascospores					
Basidiospores					
Bipolaris/Drechslera					
Cercospora					
Chaetomium					
Cladosporium					
Curvularia					
Epicoccum					
Fusarium					
Geotrichum sp.					
Memnoniella					
Myxomycetes					
Nigrospora					
Penicillium/Aspergillus	М	VL			
Pithomyces					
Rusts/Smuts					
Stemphylium					
Tetraploa					
Ulocladium					

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589 AIHA-LAP, LLC EMLAP # 173667 Texas License: LAB1016

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin		
Acremonium crotocinigenum	Crotocin		
Aspergillus favus	Alfatoxin B, cyclopiazonic acid		
Aspergillus fumigatus	Fumagilin, gliotoxin		
Aspergillus carneus	Critrinin		
Aspergillus clavatus	Cytochalasin, patulin		
Aspergillus Parasiticus	Alfatoxin B		
Aspergillus nomius	Alfatoxin B		
Aspergillus niger	Ochratoxin A, malformin, oxalicacid		
Acremonium crotocinigenum	Crotocin		
Aspergillus nidulans	Sterigmatocystin		
Aspergillus ochraceus	Ochratoxin A, penicillic acid		
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin		
	Ausdiol, austamide,		
Aspergillus ustus	austocystin, brevianamide		
Aspergillus terreus	Citreoviridin		
	Alternariol, altertoxin, altenuene, altenusin,		
Alternaria	tenuazonic acid		
Arthrinium	Nitropropionic acid		
Disultancia	Cytochalasin, sporidesmin,		
Bioploaris	sterigmatocystin		
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin		
Cladosporium	Cladosporic acid		
Clavipes purpurea	Ergotism		
Cylindrocorpon	Trichothecene		
Diplodia	Diplodiatoxin		
Fusarium	Trichothecene, zearalenone		
Fusarium moniliforme	Fumonisins		
Emericella nidulans	Sterigmatocystin		
Gliocladium	Gliotoxin		
	Griseofulvin, dechlorogriseofulvin, epi-		
Memnoniella	decholorgriseofulvin, trichodermin,		
	trichodermol		
Myrothecium	Trichothecene		
Paecilomyces	Patulin, viriditoxin		
Penicillium aurantiocandidum	Penicillic acid		
Penicillium aurantiogriseum	Penicillic acid		
Penicillium brasilanum	Penicillic acid		
Penicillium brevicompactum	Mycophenolic acid		
Penicillium camemberti	Cyclopiazonic acid		
Penicillium carneum	Mycophenolic acid, Roquefortine C		
Penicillium crateriforme	Rubratoxin		

Fungi	Mycotoxin		
Penicillium citrinum	Citrinin		
Penicillium commune	Cyclopiazonic acid		
Penicillium crustosum	Roquefortine C		
Penicillium chrysogenum	Roquefortine C		
Penicillium discolor	Chaetoglobosin C		
Penicillium expansum	Citrinin, Roquefortine C		
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin		
Penicillium hirsutum	Roquefortine C		
Penicillium hordei	Roquefortine C		
Penicillium nordicum	Ochratoxin A		
Penicillium paneum	Roquefortine C		
Penicillium palitans	Cyclopiazonic acid		
Penicillium polonicum	Penicillic acid		
Penicillum roqueforti	Roquefortine C, Mycophenolic acid		
Penicillium veridicatum	Penicillic acid		
Penicillium verrucosum	Citrinin, ochratoxin A		
Penicillium/ Aspergillus	Patulin		
Penicillium/ Aspergillus/Alternaria	Glitoxin		
Phomopsis	Macrocyclic trichothecenes		
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid		
Pithomyces	Sporidesmin		
Rhizoctonia	Slaframine		
Rhizopus	Rhizonin		
Sclerotinia	Furanocoumarins		
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene		
Torula	Cytotoxins		
Trichoderma	Trichodermin, trichodermol, gliotoxin		
Trichothecium	Trichothecene		
Wallemia	Walleminol		
Zygosporium	Cytochalasin		

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	June 16, 2021
For:	Quanesha Mullins Wilmington Housing Authority 1524 S. 16 th Street Wilmington, NC 28401
Remediation Contractor:	Not determined

On-Site Consultant:

Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Shoemory V firmchamed

Shaenaz Mirmohamed IH Technician

Tomm hu

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECT	ION 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	6
1.6	Post Remediation Verification Testing	7
SECT	ION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	7
SECT	ION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SECT	ION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	8
SECT	ION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SECT	ION 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SECT	ION 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	10
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 **Project Set Up**

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

SITE: 302 Grass Lane, Unit 110, Wilmington, NC 28405

PEC Job #: 21-21-120B-IAQ-M

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow.
- Once the HVAC system is shut down, the system shall remain off and isolated until acceptable post remediation results are obtained.

Note: For directional purposes "front" is determined by facing Grass Lane from inside the residence, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation. All non-stable furnishings and contents shall be removed from the containment area/primary control area prior to specified remediation to avoid cross contamination of furnishings and contents. If elected, said furnishings and contents can be precleaned (i.e., HEPA vacuum, etc.) and stored in the primary control area, but shall be protected (i.e., covered with poly, etc.) to avoid cross contamination.

Within the kitchen:

- Detach the floor mounted cabinet from the left wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.
- Remove the affected drywall ceiling. The length of this removal shall be the entire length of the ceiling beginning at the front wall to the rear wall. The width of this removal shall be 4 feet beginning at the door left of the affected area and extending towards the right wall.

Within the living room:

• Remove the affected drywall ceiling. The length of this removal shall be 8 feet beginning at the left wall to the right wall. The width of this removal shall be 5 feet beginning at the rear wall and extending towards the front wall.

Within the bathroom:

• Remove the baseboard entirely from the front wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.

Within the rear right bedroom:

• Remove the affected ceiling drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.

Within the rear left bedroom closet:

• Remove the affected drywall from the right wall. The height of this removal shall be 2 feet beginning at the floor and extending towards the ceiling. The width of this removal shall be 3 feet beginning at the front wall and extending towards the rear wall.

Throughout the residence (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

• Clean all remaining surfaces within the control area as specified herein under general specifications for primary control areas.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.

SITE: 302 Grass Lane, Unit 110, Wilmington, NC 28405

PEC Job #: 21-21-120B-IAQ-M

- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not recontaminated (i.e. working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% + /-3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp investigative report dated May 19, 2021, and June 16, 2021.

Phoenix EnviroCorp Chain of Custody dated May 13, 2021.

Analytical reports dated May 14, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future exposures will not occur.

SITE: 302 Grass Lane, Unit 110, Wilmington, NC 28405

PEC Job #: 21-21-120B-IAQ-M

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Analytical Method
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs

SITE: 302 Grass Lane, Unit 110, Wilmington, NC 28405

all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e. broken-pipe-line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134 Respiratory Protection	
29 CFR 1910.145 Specifications for Accident Prevention, Signs and Ta	ags
29 CFR 1926.28 Personal Protective Equipment	
29 CFR 1926.59 Hazard Communication	
29 CFR 1926.96 Occupational Foot Protection	
29 CFR 1926.100 Head Protection	
29 CFR 1926.101 Hearing Protection	
29 CFR 1926.102 Eye and Face Protection	
29 CFR 1926.403 Electrical General Requirements	
29 CFR 1926.416 Safety General Requirements	

29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by

SITE: 302 Grass Lane, Unit 110, Wilmington, NC 28405

PEC Job #: 21-21-120B-IAQ-M

OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove				
Sodium Hypochlorite	Neoprene or Nitrile				
Phenolic Compounds	Neoprene				
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)				
Detergents	Latex				

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

June 8, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-184-IAQ-M - 302 Grass Lane Apartment 201, Wilmington, NC - Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on June 3, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling to determine airborne mold spore levels and to collect surface samples of suspect visible mold growth.

Background Information: The unit is occupied and fully furnished with contents throughout.

The HVAC system was operating in the cool mode, set at 70° F upon PEC's arrival and during sampling.

Note: For directional purposes "front" is determined by facing the playground adjacent to the parking lot from inside the building, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

- Apparent water damage and suspect visible mold growth in the kitchen cabinet underneath the sink.
- Apparent water damage and suspect visible mold growth in the bathroom cabinet underneath the sink.
- Apparent water damage/discoloration on the ceiling in the bathroom.
- Suspect visible mold growth on the bathtub in the bathroom.

Mold Testing – Surface: Non-viable surface samples were collected from areas of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

Location Bathroom cabinet underneath the sink	<u>Result</u> M – FG Chaetomium L – FG Penicillium/Aspergillus
Bathtub in the bathroom	VL – FG Cladosporium

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen/living room, the bathroom, the rear right bedroom, the rear left bedroom, and the front right bedroom. *Micro 5 sampling media was utilized for*

the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.

Results identified elevated airborne levels of Chaetomium within the rear left bedroom.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the unit ranged from 50.0% - 53.7% with an outdoor reading of 85.0% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%.

Conclusions: Sample results identified elevated airborne mold spore levels (*Chaetomium*) in the rear left bedroom and surface mold growth (*Chaetomium*, *Cladosporium*, and *Penicillium/Aspergillus*) within the bathroom. Upon request, and for an additional fee, PEC can provide a protocol that outlines mold remediation activities.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Valei Sum

Philip Green IH Technician

Jour An

Tommie Green, CIEC Professional Industrial Hygienist

Enclosures

Photo 1

Apparent water damage/suspect visible mold growth in kitchen cabinet underneath sink

Photo 2

Apparent water damage/suspect visible mold growth in the bathroom cabinet underneath sink

Photo 3

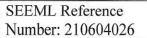
Apparent water damage/discoloration on the bathroom ceiling

Photo 4

Suspect visible mold growth on the bathroom bathtub

Samilles accepted

Phoenix EnviroCorp	CHAIN OF CUSTODY								
ACCO SHIPYARD BLVD. WILMINGTORL NC 28403	Seem/ Ref. # 2106040Hb TELEPHONE (910) 397-0370 FAX (910) 313-6094	1	a € Ţ); 6/3/2021	099-10	5				
PEC Job #: 21-21-184-IAQ-	200 G	1, Wilmington,	NC 28405						
	KMGREEN@PHOENIXENVIROCORP.COM NUMBER OF SAMPLES: TURN AROUND TIME SP -5 5	ECIFIED:		1					
Sample #	Sample Area	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature "F				
060321-PG-301	Kitchen/Living Room	25L	S001	50.0	73.3				
060321-PG-302	Bathroom	25L	S001	53.7	70.1				
060321-PG-303	Rear Right Bedroom	25L	S001	52.4	71.4				
060321-PG-304	Rear Left Bedroom	25L	5001	53.5	71.3				
060321-PG-305	Front Right Bedroom	25L	S001	52.1	70.4				
060321-PG-401	Black VSMG in bathroom cabinet underneath sink	1 cm sq	5001T						
060321-PG-402	Black VSMG on bathtub in bathroom	1 cm sq	S001T						
			1						
					<u> </u>				


Samples Collected By (Printed Name and Signature):

(aller them)

Date Signed: 6/3/2021

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/3/2021	14:30:00 PM	Intact	Alecter	The beggy
			AFFILIATION:	AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

 \boxtimes

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/04/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			Spor	e Trap Re					
							: 06/03/21		
Attn: Phoenix Env				: 06/04/21					
4020 Shipyard Bl			Date	Analyzed	: 06/04/21				
Wilmington, NC 2			Date	Reported	: 06/04/21				
					Date	e Revised	:		
					Proj	ect Name	: 21-21-184	-IAQ-M	
								Lane, Apt 201	
		Real and the Real of the Re			Project City, S				
					SEEML Ref				
TEST METHOD: DIRECT N	/ICROSC	OPY EXAMIN	ATION SI	EEML SOP					
Client Sample ID	C	60321-PG-30	1	0	60321-PG-30	2		060321-PG-303	
Location					10.00 Pres				
		chen / Living Ro			Bathroom		Re	ear Right Bedroor	n
Lab Sample ID	2	210604026-09	9	2	10604026-10	0		210604026-101	
Comments									
Hyphal Fragments									
Pollen	2	80							
Spore Trap Used		M5			M5			M5	
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%
Alternaria									
Ascospores	2	80	10				1	40	9
Basidiospores	12	480	57	2	80	33	4	160	36
Bipolaris/Drechslera									
Chaetomium									
Cladosporium	7	280	33	2	80	33	5	200	45
Curvularia									
Epicoccum									5. 19. 19. 19.
Cercospora									
Fusarium									
Memnoniella									
Nigrospora									
Penicillium/Aspergillus				2	80	33	1	40	9
Polythrincium									
Rusts									
Smuts/Periconia/Myxomy									
Spegazzinia									
Stachybotrys							Sec. Sec.		
Stemphylium									
Tetraploa									
Torula									
Ulocladium							and the second second		
Colorless/Other Brown*									
Didium									
Zygomycetes									
Pithomyces									
Background debris (1-5)**	3			3			3		el calenti
Sample Volume(liters)	25			25			25		
TOTAL SPORES/M ³	21	840		6	240		11	440	

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell, Approved Laboratory Signatory

Angel Gosnell

Texas Lic: LAB1016

Spore Trap Report

			Spor	e Trap Re					
					Date	Sampled:	06/03/21		
Attn: Phoenix Env		Date Received: 06/04/21							
4020 Shipyard Bl	Date Analyzed: 06/04/21								
Wilmington, NC 28403 Date Repor									
						e Revised:		************	
					Proj	ect Name:	21-21-184	-IAQ-M	
								Lane, Apt 2	01
					Project City, S	State, ZIP:	Wilmingto	n, NC 28405	ĺ
					SEEML Ref	erence # :	21060402	6	
TEST METHOD: DIRECT N	IICROSCO	OPY EXAMIN	ATION SI	EEML SOP					
Client Sample ID	C	60321-PG-30	4	0	60321-PG-30	5			
Location	R	ear Left Bedroo	m	Fro	ont Right Bedro	om			
Lab Sample ID	2	10604026-10	2	2	10604026-10	3			
Comments									
Hyphal Fragments								I	
Pollen									
Spore Trap Used		M5			M5				And Conserver Supervision and Supervision
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%			
Alternaria									
Ascospores									
Basidiospores	3	120	21	12	480	26			
Bipolaris/Drechslera									
Chaetomium	1	40	7						
Cladosporium	7	280	50	15	600	32			
Curvularia									
Epicoccum	1	40	7						
Cercospora									
Fusarium									
Memnoniella									
Nigrospora									
Penicillium/Aspergillus	2	80	14	20	800	43			
Polythrincium								New York	
Rusts									
Smuts/Periconia/Myxomy									
Spegazzinia									
Stachybotrys					Sector Sector		New Press		
Stemphylium									and a second second second second
Tetraploa									
Torula									
Ulocladium	A Contraction					(1990) 1990)			
Colorless/Other Brown*									
Oidium									
Zygomycetes								and the state of the second state	
Pithomyces									
Background debris (1-5)**	3			3					
Sample Volume(liters)	25			25					
TOTAL SPORES/M ³	14	560		47	1880				

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory

Texas Lic: LAB1016

Surface and Bulk Sample Report

	Sulla	ice and Bulk Samp	and the second	
			Date Sampled:	06/03/21
Attn: Phoenix I			Date Received:	06/04/21
4020 Shipyard			Date Analyzed:	06/04/21
Wilmington, N	IC 28403		Date Reported:	06/04/21
			Date Revised:	
		<i>V</i>	Project Name:	21-21-184-IAQ-M
			Project Address:	302 Grass Lane, Apt 201
			Project City, State ZIP:	Wilmington, NC 28405
			SEEML Reference #:	210604026
TEST METHOD: Direct Micr	oscopic Examination (SEEN	IL SOP 18)		
Client Sample ID	060321-PG-401	060321-PG-402		T
Location	Black VSMG in Bathroom Cabinet Underneath Sink	Black VSMG on Bathtub in Bathroom		
SEEML Sample ID	210604026-104	210604026-105		
Sample Type	Таре	Таре		
	Quantification*	Quantification*		
Hyphal Fragments	M	М		
Pollen		Single		
General Impressions **	FG	FG		
Fungal Spore:				
Alternaria				
Acremonium				
Ascospores				
Basidiospores				
Bipolaris/Drechslera				
Cercospora				
Chaetomium	М			
Cladosporium		VL		
Curvularia				
Epicoccum				
Fusarium				
Geotrichum sp.				
Memnoniella				
Myxomycetes				
Nigrospora				
Penicillium/Aspergillus	L			
Pithomyces				
Rusts/Smuts				
Stemphylium				
Tetraploa				
Ulocladium				

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589 AIHA-LAP, LLC EMLAP # 173667 Texas License: LAB1016

Samples	allested		

Construction of the second sec	Seemi Rest 210604	CHAIN OF CUSTODY LABORATORY TEST REQUEST AF# 10604019 106 ID: 118 - 119 TELEPHONE (910) 397-0370 FAX (910) 313-6094 6/3/2021					
CONTACT: Philip Green	TELEPHONE (910) 397-037	0 FAX (910) 313-6094	1.0	6/3/2021	111	-	
PEC Job #: 21-21-182,183,184,185-1	IAQ-M SITE ADDRESS:	302 Grass Lane, Wilming					
PLEASE EMAIL RESULTS TO: KMGREE	N@PHOENIXENVIROCORP.COM			5			
Spore Trap - Micro-5 Surface Samples	NUMBER OF SAMPLES: 2 0	TURN AROUND TIME SP	PECIFIED: 4 hr 48 h	nrX Standard			
Sample #	Sample Area		Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature "F	
060321-PG-701	Outside - Front		25L	S001	85.0	83.2	
060321-PG-702	Outside - Rear		25L	S001			
					_		
						1	
		-				_	
						in and the second	
		_					
1							
	402.				-		
	1.1.1						
nples Collected By (Printed Name and	Signature):	Alex Berg	D	ate Signed:	6/3/2021	_	

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/3/2021	14:30:00 PM	Intact	Rauther	TA A.A.
_			AFFILIATION:	AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/04/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			-	-	Date	e Sampled:	06/03/21		
Attn: Phoenix Enviro Corp.			Date Received: 06/04/21						
4020 Shipyard Blvd.			Date Analyzed: 06/04/21						
Wilmington, NC	28403				Date	e Reported:	06/04/21		
					Dat	te Revised:			
					Pro	ject Name:	21-21-182	,183,184,185-	IAQ-M
					Proje	ct Address:	302 Grass	Lane	
					Project City,	State, ZIP:	Wilmingto	n, NC 28405	
					SEEML Re	ference # :	21060402	9	
TEST METHOD: DIRECT	MICROSCO	OPY EXAMIN	NATION SE	EML SOP	7				
Client Sample ID	060321-PG-701		060321-PG-702						
Location	Outside - Front			Outside - Rea	r				
Lab Sample ID	2	210604029-118		210604029-119					
Comments									
Hyphal Fragments				1	40				
Pollen	4	160		2	80				
Spore Trap Used	M5			M5					
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%			
Alternaria									
Ascospores	279	11200	73	51	2040	27			
Basidiospores	81	3240	21	27	1080	14			
Bipolaris/Drechslera									
Chaotomium									

Pollen	4	160		2	80			
Spore Trap Used		M5			M5			
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%		
Alternaria								
Ascospores	279	11200	73	51	2040	27		
Basidiospores	81	3240	21	27	1080	14		
Bipolaris/Drechslera								
Chaetomium								
Cladosporium	9	360	2	78	3120	41		
Curvularia								
Epicoccum								
Cercospora								
Fusarium								
Memnoniella								
Nigrospora								
Penicillium/Aspergillus	7	280	2	30	1200	16		
Polythrincium								
Rusts	9	360	2	3	120	2		
Smuts/Periconia/Myxomy								
Spegazzinia								
Stachybotrys								
Stemphylium								
Tetraploa								
Torula								
Ulocladium								
Colorless/Other Brown*								
Oidium								
Zygomycetes								
Pithomyces								
Background debris (1-5)**	3			3				
Sample Volume(liters)	25			25				
TOTAL SPORES/M ³	385	15400		189	7560			
Revisions:								

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory 102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin
Acremonium crotocinigenum	Crotocin
Aspergillus favus	Alfatoxin B, cyclopiazonic acid
Aspergillus fumigatus	Fumagilin, gliotoxin
Aspergillus carneus	Critrinin
Aspergillus clavatus	Cytochalasin, patulin
Aspergillus Parasiticus	Alfatoxin B
Aspergillus nomius	Alfatoxin B
Aspergillus niger	Ochratoxin A, malformin, oxalicacid
Acremonium crotocinigenum	Crotocin
Aspergillus nidulans	Sterigmatocystin
Aspergillus ochraceus	Ochratoxin A, penicillic acid
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin
	Ausdiol, austamide,
Aspergillus ustus	austocystin, brevianamide
Aspergillus terreus	Citreoviridin
	Alternariol, altertoxin, altenuene, altenusin,
Alternaria	tenuazonic acid
Arthrinium	Nitropropionic acid
	Cytochalasin, sporidesmin,
Bioploaris	sterigmatocystin
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin
Cladosporium	Cladosporic acid
Clavipes purpurea	Ergotism
Cylindrocorpon	Trichothecene
Diplodia	Diplodiatoxin
Fusarium	Trichothecene, zearalenone
Fusarium moniliforme	Fumonisins
Emericella nidulans	Sterigmatocystin
Gliocladium	Gliotoxin
	Griseofulvin, dechlorogriseofulvin, epi-
Memnoniella	decholorgriseofulvin, trichodermin,
	trichodermol
Myrothecium	Trichothecene
Paecilomyces	Patulin, viriditoxin
Penicillium aurantiocandidum	Penicillic acid
Penicillium aurantiogriseum	Penicillic acid
Penicillium brasilanum	Penicillic acid
Penicillium brevicompactum	Mycophenolic acid
Penicillium camemberti	Cyclopiazonic acid
Penicillium carneum	Mycophenolic acid, Roquefortine C
Penicillium crateriforme	Rubratoxin

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	July 8, 2021
For:	Quanesha Mullins Wilmington Housing Authority 1524 S. 16 th Street Wilmington, NC 28401
Remediation Contractor:	Not determined
On-Site Consultant:	Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Tomm have

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SEC	FION 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	6
1.6	Post Remediation Verification Testing	7
SEC1	FION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	7
SEC1	FION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SEC1	FION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	8
SEC	FION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SEC	FION 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SEC	ΓΙΟΝ 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	10
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

PEC Job #: 21-21-184A-IAQ-M

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow. Prior to isolating the vents, the register covers (diffusers) shall be removed, and the supply shall be isolated at the metal boot. Once isolated, the registers and surrounding building materials shall be cleaned.
- The interior of the air handler, rigid duct system, intake box, etc. shall be thoroughly cleaned by an HVAC professional experienced in mold remediation. The interior can be cleaned with mechanical methods that aggressively disturb all interior surfaces and filter the disturbed airborne particulates.

PEC Job #: 21-21-184A-IAQ-M

- Cleaning of components shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris.
- PEC recommends the removal and disposal of the flex ducts when feasible, as well as any interior duct board where cleaning will damage the duct board. Once removed, the remediation contractor shall isolate the connection point where the flex duct and/or duct board was detached with a critical barrier (such as plastic, etc.) to prevent air flow.
- Once the HVAC system components are cleaned or replaced anew, the system shall remain off and isolated until acceptable post remediation results are obtained.
- A written document shall be obtained from the remediation contractor verifying that the HVAC system has been cleaned by an HVAC cleaning company with mold experience. This document shall include the property address and date of services and shall be filed with other mold remediation documents.

Note: For directional purposes "front" is determined by facing the playground from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation.

Within the bathroom:

- Remove the entire drywall ceiling.
- Remove and discard the floor mounted cabinet (with sink) along the front wall.
- Remove an approximately 5-foot by 3-foot section of drywall from the front wall beginning at the right wall and extending to the bathtub (approximately 5 feet); and beginning at the floor and extending up 3 feet.
- Remove an approximately 2.5 foot by 3-foot section of drywall from the right wall, beginning at the front wall and extending to the door (approximately 2.5 feet); and beginning at the floor and extending 3 feet up. Also, remove the trim board from the front side of the door.
- Remove any loose floor tiles.

Within the kitchen:

- Remove and discard the floor mounted cabinets associated with the sink along the front wall.
- Remove all baseboards from the front wall.
- Assess the drywall uncovered by the removal of the specified cabinet and baseboards and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of any affected areas when possible.
- Remove any loose floor tiles.

Within the bathroom, the kitchen, and the rear left bedroom:

- Preclean (i.e., HEPA vacuum, etc.) and remove all non-stabled furnishing and contents from the primary control areas, prior to commencement of other specified remediation.
- Clean all remaining surfaces as specified below under general specifications for primary control areas.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.

PEC Job #: 21-21-184A-IAQ-M

- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not recontaminated (i.e. working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% + /-3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp initial investigative report dated June 8, 2021.

Phoenix EnviroCorp investigative report dated July 8, 2021.

Phoenix EnviroCorp Chain of Custody dated June 3, 2021.

Analytical reports dated June 4, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future

exposures will not occur.

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Analytical Method
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e. broken-pipe-line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection

29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2 nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by

PEC Job #: 21-21-184A-IAQ-M

OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

June 8, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-185-IAQ-M - 302 Grass Lane, Apartment 202, Wilmington, NC - Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced residence on June 3, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling to determine airborne mold spore levels and to collect surface samples of suspect visible mold growth.

Background Information: The resident reported a leak in the past in the kitchen.

The unit was occupied and fully furnished with contents throughout.

The HVAC system was operating in the cool mode, set at 70° F upon PEC's arrival and during sampling.

Note: For directional purposes "front" is determined by facing the playground adjacent to the parking lot from inside the building, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

• Apparent water damage and suspect visible mold growth in kitchen cabinet underneath the sink

Mold Testing – Surface: Non-viable surface samples were collected from areas of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

Location	Result
Kitchen cabinet underneath sink	M – FG Chaetomium

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen/living room, the bathroom, the rear right bedroom, and the rear left bedroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.*

Results identified elevated airborne levels of Chaetomium within the bathroom.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the unit ranged from 54.5% – 56.5% with an outdoor reading of 85.0% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%.

Conclusions: Sample results identified elevated airborne mold spore levels of *Chaetomium* within the bathroom and surface mold growth of *Chaetomium* within the kitchen cabinet underneath the sink. Upon request, and for an additional fee, PEC can provide a protocol that outlines mold remediation activities.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Ullei Pum

Philip Green IH Technician

Enclosures

Jour two

Tommie Green, CIEC Professional Industrial Hygienist

Photo 1

Apparent water damage and suspect visible mold growth in kitchen cabinet underneath sink

Samples allepted

Phoenix EnviroCorp	CHAIN OF C				
4020 BHIPYARD BLVD. WILMINGTON, NC 28403	Stem DEL 210604027 TELEPHONE (910) 397-0370 FAX (910) 313-6094	10			
ONTACT: Philip Green	TELEPHONE (910) 397-0370 FAX (910) 313-6094		CD! 106 - 1 6/3/2021	10	
EC Job #: 21-21-185-IA0	2-M SITE ADDRESS: 302 Grass Lane, Apt. 2	202, Wilmington,	NC 28405		
LEASE EMAIL RESULTS TO AMPLE TYPE: Spore Trap - Micro Surface Sample			nrX Standard	i	
Sample #	Sample Area	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature "F
060321-PG-501	Kitchen/Living Room	25L	S001	54.5	71.0
060321-PG-502	Bathroom	25L	S001	56.5	67.7
060321-PG-503	Rear Right Bedroom	25L	S001	55.2	71.0
060321-PG-504	Rear Left Bedroom	25L	S001	55.6	71.3
060321-PG-601	Black VSMG in kitchen cabinet underneath sink	1 cm sq	S001T		
				an future of the state of the s	
	*			1	
mples Collected By (Printed	Name and Signature): (Vactory		Date Signed:	6/3/2021	

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/3/2021	14:30:00 PM	Intact	place Arm	511 144
			AFFILIATION:	AFFILIATION:

SEEML Reference Number: 210604027

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

П.	-
1	
E	-

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

<u>Angel Gosnell</u>

Date: 06/04/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			Spo	re Trap R	eport				
Atta: Phoonix En	vina O				Date	e Sample	d: 06/03/21		
Attn: Phoenix En				d: 06/04/21					
4020 Shipyard E	Date Analyzed: 06/04/21								
Wilmington, NC	28403						1: 06/04/21		Actor Actor
						e Revised			
					Proi	ect Name	: 21-21-185	-IAO-M	
					Proiec	t Address	302 Grass	Lane, Apt. 202	1
					Project City,	State, ZIF	: Wilmingto	n NC 28405	
					SEEMI Dof	erence #	: 21060402	7	
TEST METHOD: DIRECT	MICROSC	OPY EXAMIN	ATION S	EEML SOP	7		1 21000102		
Client Sample ID		060321-PG-50			060321-PG-50	2	1 1	060321-PG-503	
Location	Kite	chen / Living Ro	om						
					Bathroom		R	ear Right Bedroor	n
Lab Sample ID	2	210604027-10	6	2	10604027-10	7		210604027-108	
Comments		· · · ·							
Hyphal Fragments									
Pollen Spore Trep Llead									
Spore Trap Used		M5			M5		1	M5	
A 14	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%
Alternaria	1	40	7						70
Ascospores	2	80	13	1	40	17	1	40	25
Basidiospores	2	80	13				T		20
Bipolaris/Drechslera									
Chaetomium				2	80	33			
Cladosporium	1	40	7	1	40	17	1	40	25
Curvularia									
Epicoccum							and the second		
Cercospora									
Fusarium									
Memnoniella									
Nigrospora							- Harrison and a		
Penicillium/Aspergillus	9	360	60	2	80	33	2	80	50
Polythrincium									
Rusts									11 - C
Smuts/Periconia/Myxomy									
Spegazzinia									
Stachybotrys									
Stemphylium									and the second
Tetraploa									
Forula									
Jlocladium									
Colorless/Other Brown*									
Didium									
Zygomycetes								4	
Pithomyces									
Background debris (1-5)**	3			3			3		
Sample Volume(liters)	25			25			25		
OTAL SPORES/M ³	15	600		6	240		4	160	

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the spores/m³ multiplied by the spores/m³.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell, Approved Laboratory Signatory

Angel Gosnell

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20

Texas Lic: LAB1016 Page 2 of 14

Bara Tuan D.

			Spore I	rap Report				
					Date Sample	d: 06/03/21		
Attn: Phoenix En	viro Corp.				Date Receive			
4020 Shipyard B	llvd.			Date Analyzed: 06/04/21				
Wilmington, NC	28403				Date Reporte			
					Date Revise			
					Project Nam		5 IAO M	
					Project Addres	s: 302 Grad	s Lana Ant	202
				Project	City, State, ZI	3. 502 Gras	on NC 29404	202
		_		SEEM	IL Reference #	· 2106040	27)
TEST METHOD: DIRECT I	MICROSC	OPY EXAMIN	ATION SEEN	L SOP 7		. 2100040	21	
Client Sample ID		060321-PG-50						
Location								
		ear Left Bedroc						
Lab Sample ID	2	210604027-10	9					
Comments								
Hyphal Fragments								
Pollen								
Spore Trap Used		M5						
	raw ct.	spores/m ³	%		3			
Alternaria								
Ascospores	3	120	30					
Basidiospores	4	160	40					
Bipolaris/Drechslera				a design of the second				
Chaetomium								
Cladosporium	1	40	10					
Curvularia								
Epicoccum							STRANSPORT OF	
Cercospora								
Fusarium								
Memnoniella								
Nigrospora					No. of Concerns		A Margan Marson	
Penicillium/Aspergillus	2	80	20			1		
Polythrincium						C State of the	A REAL PROPERTY OF	
Rusts								
Smuts/Periconia/Myxomy								
Spegazzinia								
Stachybotrys				State of the state	A STATE OF A	States and		
Stemphylium								
Tetraploa								
Torula						1		
Ulocladium								
Colorless/Other Brown*								
Oidium								
Zygomycetes								
Pithomyces								Sector Concerns
Background debris (1-5)**	3				and the second second			
Sample Volume(liters)	25							
TOTAL SPORES/M ³	10	400						

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell, Approved Laboratory Signatory

Angel Gosnell

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20

Texas Lic: LAB1016 Page 3 of 14

Surface and Bulk Sample Report

	ouna	ce and Bulk Sample Report	
All. D		Date Sampled:	06/03/21
Attn: Phoenix		Date Received:	06/04/21
4020 Shipyaro		Date Analyzed:	06/04/21
Wilmington, N	IC 28403	Date Reported:	
		Date Revised:	
			21-21-185-IAQ-M
			302 Grass Lane, Apt. 202
		Project City, State ZIP:	
		SEEML Reference #:	
TEST METHOD: Direct Micr	oscopic Examination (SEEM	L SOP 18)	210004027
Client Sample ID	060321-PG-601		[
Location	Black VSMG In Kitchen Cabinet Underneath Sink		
SEEML Sample ID	210604027-110		
Sample Type	Tape		
	Quantification*		
Hyphal Fragments	M		
Pollen			
General Impressions **	FG		
Fungal Spore:			
Alternaria			
Acremonium			
Ascospores			
Basidiospores			
Bipolaris/Drechslera			
Cercospora			
Chaetomium	M		
Cladosporium			
Curvularia			
Epicoccum			
usarium			
Geotrichum sp.			
lemnoniella			
lyxomycetes			
ligrospora			
enicillium/Aspergillus			
lithomyces			
lusts/Smuts			
temphylium			
etraploa			
llocladium			

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589

AIHA-LAP, LLC EMLAP # 173667 Texas License: LAB1016

Samples	allested		

Construction of the second sec	Seemi Rest 210604	CHAIN OF CUST LABORATORY TEST RI	EQUEST	ID: 118- 6/3/2021	119				
CONTACT: Philip Green	TELEPHONE (910) 397-037	0 FAX (910) 313-6094	1.0	6/3/2021	111	-			
PEC Job #: 21-21-182,183,184,185-1	IAQ-M SITE ADDRESS:	302 Grass Lane, Wilming							
PLEASE EMAIL RESULTS TO: KMGREE	N@PHOENIXENVIROCORP.COM			5					
Spore Trap - Micro-5 Surface Samples	NUMBER OF SAMPLES: 2 0	TURN AROUND TIME SP	PECIFIED: 4 hr 48 h	nrX Standard					
Sample #	Sample Area		Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature "F			
060321-PG-701	Outside - Front		25L	S001	85.0	83.2			
060321-PG-702	Outside - Rear		25L	S001					
					_				
						1			
		-							
						in the second			
1									
	402.				-				
	1.1.1								
nples Collected By (Printed Name and	Signature):	Alex Berg	D	ate Signed:	6/3/2021	_			

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/3/2021	14:30:00 PM	Intact	Rauther	TA A.A.
_			AFFILIATION:	AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/04/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			-	-	Date	e Sampled:	06/03/21		
Attn: Phoenix Enviro Corp.					Date	Received:	06/04/21		
4020 Shipyard E	3lvd.				Date	Analyzed:	06/04/21		
Wilmington, NC	28403			Date Reported: 06/04/21					
					Dat	te Revised:			
					Pro	ject Name:	21-21-182	,183,184,185-	IAQ-M
					Proje	ct Address:	302 Grass	Lane	
					Project City,	State, ZIP:	Wilmingto	n, NC 28405	
					SEEML Re	ference # :	21060402	9	
TEST METHOD: DIRECT	MICROSCO	OPY EXAMIN	NATION SE	EML SOP	7				
Client Sample ID	060321-PG-701		060321-PG-702						
Location		Outside - Front		Outside - Rear					
Lab Sample ID	2	10604029-1	18	210604029-119					
Comments									
Hyphal Fragments				1	40				
Pollen	4	160		2	80				
Spore Trap Used		M5			M5				
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%			
Alternaria									
Ascospores	279	11200	73	51	2040	27			
Basidiospores	81	3240	21	27	1080	14			
Bipolaris/Drechslera									
Chaotomium									

Pollen	4	160		2	80			
Spore Trap Used		M5			M5			
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%		
Alternaria								
Ascospores	279	11200	73	51	2040	27		
Basidiospores	81	3240	21	27	1080	14		
Bipolaris/Drechslera								
Chaetomium								
Cladosporium	9	360	2	78	3120	41		
Curvularia								
Epicoccum								
Cercospora								
Fusarium								
Memnoniella								
Nigrospora								
Penicillium/Aspergillus	7	280	2	30	1200	16		
Polythrincium								
Rusts	9	360	2	3	120	2		
Smuts/Periconia/Myxomy								
Spegazzinia								
Stachybotrys								
Stemphylium								
Tetraploa								
Torula								
Ulocladium								
Colorless/Other Brown*								
Oidium								
Zygomycetes								
Pithomyces								
Background debris (1-5)**	3			3				
Sample Volume(liters)	25			25				
TOTAL SPORES/M ³	385	15400		189	7560			
Revisions:								

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory 102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin
Acremonium crotocinigenum	Crotocin
Aspergillus favus	Alfatoxin B, cyclopiazonic acid
Aspergillus fumigatus	Fumagilin, gliotoxin
Aspergillus carneus	Critrinin
Aspergillus clavatus	Cytochalasin, patulin
Aspergillus Parasiticus	Alfatoxin B
Aspergillus nomius	Alfatoxin B
Aspergillus niger	Ochratoxin A, malformin, oxalicacid
Acremonium crotocinigenum	Crotocin
Aspergillus nidulans	Sterigmatocystin
Aspergillus ochraceus	Ochratoxin A, penicillic acid
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin
	Ausdiol, austamide,
Aspergillus ustus	austocystin, brevianamide
Aspergillus terreus	Citreoviridin
	Alternariol, altertoxin, altenuene, altenusin,
Alternaria	tenuazonic acid
Arthrinium	Nitropropionic acid
	Cytochalasin, sporidesmin,
Bioploaris	sterigmatocystin
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin
Cladosporium	Cladosporic acid
Clavipes purpurea	Ergotism
Cylindrocorpon	Trichothecene
Diplodia	Diplodiatoxin
Fusarium	Trichothecene, zearalenone
Fusarium moniliforme	Fumonisins
Emericella nidulans	Sterigmatocystin
Gliocladium	Gliotoxin
	Griseofulvin, dechlorogriseofulvin, epi-
Memnoniella	decholorgriseofulvin, trichodermin,
	trichodermol
Myrothecium	Trichothecene
Paecilomyces	Patulin, viriditoxin
Penicillium aurantiocandidum	Penicillic acid
Penicillium aurantiogriseum	Penicillic acid
Penicillium brasilanum	Penicillic acid
Penicillium brevicompactum	Mycophenolic acid
Penicillium camemberti	Cyclopiazonic acid
Penicillium carneum	Mycophenolic acid, Roquefortine C
Penicillium crateriforme	Rubratoxin

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	June 30, 2021
For:	Quanesha Mullins Wilmington Housing Authority 1524 S. 16 th Street Wilmington, NC 28401
Remediation Contractor:	Not determined
On-Site Consultant:	Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Tomm two

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SEC	TION 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	6
1.6	Post Remediation Verification Testing	7
SEC	FION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	7
SEC	FION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SEC	FION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	8
SEC	FION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SEC	FION 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SEC	TION 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	10
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute =Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

PEC Job #: 21-21-185A-IAQ-M

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow. Prior to isolating the vents, the register covers (diffusers) shall be removed, and the supply shall be isolated at the metal boot. Once isolated, the registers and surrounding building materials shall be cleaned.
- The interior of the air handler, rigid duct system, intake box, etc. shall be thoroughly cleaned by an HVAC professional experienced in mold remediation. The interior can be cleaned with mechanical methods that aggressively disturb all interior surfaces and filter the disturbed airborne particulates.

PEC Job #: 21-21-185A-IAQ-M

- Cleaning of components shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris.
- PEC recommends the removal and disposal of the flex ducts when feasible, as well as any interior duct board where cleaning will damage the duct board. Once removed, the remediation contractor shall isolate the connection point where the flex duct and/or duct board was detached with a critical barrier (such as plastic, etc.) to prevent air flow.
- Once the HVAC system components are cleaned or replaced anew, the system shall remain off and isolated until acceptable post remediation results are obtained.
- A written document shall be obtained from the remediation contractor verifying that the HVAC system has been cleaned by an HVAC cleaning company with mold experience. This document shall include the property address and date of services and shall be filed with other mold remediation documents.

Note: For directional purposes "front" is determined by facing the playground from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation.

Within the bathroom:

- Detach the floor mounted cabinet (with sink) from the front wall, and discard water damaged components (i.e., cabinet floor, etc.).
- Remove all baseboards from the front and left walls (approximately 4 feet total).
- Assess the drywall uncovered by the removal of specified cabinet and baseboards, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of any affected areas when possible.
- Remove any loose floor tiles.

Within the kitchen:

- Detach the floor mounted cabinets along the left wall associated with the sink, and discard water damaged components (i.e., cabinet floor, etc.).
- Assess the drywall uncovered by the removal of specified cabinet and remove any affected drywall (i.e., drywall with suspect visible mold growth/apparent water damage) and extend the drywall removal within a 2-foot radius of any affected areas when possible.
- Clean the interior and exterior of the refrigerator.
- Remove any loose floor tiles.

Throughout the unit (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

- Preclean (i.e., HEPA vacuum, etc.) all exposed surfaces of contents and remove all contents from the containment area prior to commencement of other specified remediation. If elected, the contents can be precleaned and stored in the containment, but shall be protected (i.e., covered with poly, etc.) to avoid cross contamination of contents.
- Clean all remaining surfaces throughout the unit as specified below under general specifications for primary control areas; paying special attention to horizontal areas where dust/mold spores can settle (i.e., floors, baseboards, tops of trim boards, etc.).

General Specifications for Primary Control Areas

PEC Job #: 21-21-185A-IAQ-M

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- All wall cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not recontaminated (i.e. working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% + /-3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require re-

cleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp investigative report dated June 8, 2021, and June 30, 2021.

Phoenix EnviroCorp Chain of Custody dated June 3, 2021.

Analytical reports dated June 4, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future

exposures will not occur.

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Analytical Method
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e. broken-pipe-line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection

29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2 nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by

PEC Job #: 21-21-185A-IAQ-M

OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

April 30, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-132-IAQ-M; 302 Grass Lane, Unit 203, Wilmington, NC 28401 – Mold Investigation

Enclosed are the results of the mold investigation conducted at the above referenced unit on April 23, 2021. Phoenix EnviroCorp (PEC) was retained to conduct a mold investigation and provide a mold remediation protocol.

Background Information: The tenant reported mold growth in the bathroom according to the on-site representative during PEC's visit.

This is a one-story unit located on the 2nd floor of a two-story apartment building built on a slab. This unit is fully furnished and without carpet.

The HVAC system was operating in the cool mode set at 70° F upon PEC's arrival and during sampling.

Note: For directional purposes, "front" is determined by facing Grass Lane from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

• Apparent water damage and suspect visible mold growth within the bathroom cabinet on the front wall

Mold Testing – **Surface:** A non-viable surface sample was collected from an area of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

<u>Location</u> Within the bathroom cabinet <u>Result</u> **M – FG** *Chaetomium*

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen/living room, the bathroom, the rear left bedroom, and the rear right bedroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a*

total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.

Results indicated acceptable levels of airborne mold spores in all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Moisture Readings: Moisture readings were collected with a Delmhorst moisture meter. Multiple readings were taken to represent areas and materials reported. For wood products, normal moisture content should be less than fifteen percent (<15%).

Moisture content measurements were as follows: <u>Bathroom</u>

• Wood cabinet and components = $\leq 10\%$

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the residence ranged from 45.0% - 45.6% with an outdoor RH level of 33.0% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%.

Conclusions: Air sampling within the tested areas did not indicate a problem with the indoor air quality regarding mold. However, surface mold growth (*Chaetomium*) was identified within the bathroom cabinet.

A mold remediation protocol that outlines remediation activities is attached.

Prior to commencement of mold remediation, the source of any water intrusions, leaks, and/or moisture/humidity issues shall be remedied. If water intrusions/moisture issues exist and are not remedied, mold can be expected to return.

After remediation activities are completed, but before put-back of removed components, post remediation verification shall be conducted. Upon notice, and for an additional fee, PEC can conduct post remediation verification testing.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

302 Grass Lane, Unit 203 Wilmington, NC 28401 Page 3 of 3

Thank you,

Shoenoz Virmchomed Shaenaz Mirmohamed

IH Technician

Enclosures

Tomm two

Tommie Green, CIEC Professional Industrial Hygienist

Photo 1

Apparent water damage and suspect visible mold growth within the bathroom cabinet

CHAIN OF CUSTODY

LABORATORY TEST REQUEST

Seem | Ref # 210427015 Lab 1D: USY-040

CONTACT: Shaenaz Mirmoh	amed TELEPHONE (910) 397-0370 FAX (910) 313	-6094	Sample date:	4/23/2021	
PEC Job #: 21-21-132-IAQ-N	A SITE ADDRESS: 302 Grass La	ane, Unit 203, Wiln	nington, NC 284	01	
PLEASE EMAIL RESULTS TO: K SAMPLE TYPE: Spore Trap - Micro-5 Surface Samples		ND TIME SPECIFIE liate 24 hr		Standard	
Sample #	Sample Area	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature °F
042321-SM-101	Kitchen/living room	25L	S001	45.0	72.2
042321-SM-102	Bathroom	25L	S001	45.2	73.4
042321-SM-103	Rear left bedroom	25L	S001	456.0	72.4
042321-SM-104	Rear right bedroom	25L	S001	45.6	72.5
042321-SM-105	Outside - Front	25L	S001	33.0	71.1
042321-SM-106	Outside - Rear	25L	S001		
042321-SM-107	Within the bathroom sink cabinet	1 cm sq	S001T	NA	NA
	1				
	Samples accepted				

Samples Collected By (Printed Name and Signature):

Shoemon V finchamed

Date Signed: 4/23/2021

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
4/23/2021	15:30	Intact	Skoner Minchanud AFFILIATION:	AFFILIATION: 4.27.21

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 04/27/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			Spor	e Trap Re		Samplad	. 04/02/04		
Atta: Phoenix Enviro Corn							: 04/23/21		
Attn: <i>Phoenix Enviro Corp.</i> 4020 Shipyard Blvd.				Date Received: 04/27/21					
Wilmington, NC 28403				Date Analyzed: 04/27/21 Date Reported: 04/27/21					
Wilmington, NC 2									
						e Revised			
							: 21-21-132-		
								Lane, Unit 203	
					Project City,				
TEAT METUOD, DIDEAT N					SEEML Ref	erence # :	210427015)	
TEST METHOD: DIRECT M				-		<u>\</u>		40004 014 400	
Client Sample ID	04	42321-SM-10	JI	0	42321-SM-10)2	()42321-SM-103	
Location	Kitc	hen / Living R	oom		Bathroom		R	ear Left Bedroon	า
Lab Sample ID	2	10427015-05	54	2	10427015-05	5		210427015-056	
Comments									
Hyphal Fragments	2	80		1	40				
Pollen									
Spore Trap Used		M5			M5			M5	
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%
Alternaria									
Ascospores	4	160	50	3	120	21	2	80	22
Basidiospores	2	80	25	3	120	21	1	40	11
Bipolaris/Drechslera									
Chaetomium									
Cladosporium	1	40	13	3	120	21	1	40	11
Curvularia				4	160	29	2	80	22
Epicoccum				1	40	7			
Cercospora									
Fusarium									
Memnoniella									
Nigrospora									
Penicillium/Aspergillus	1	40	13				2	80	22
Polythrincium									
Rusts									
Smuts/Periconia/Myxomy									
Spegazzinia									
Stachybotrys									
Stemphylium									
Tetraploa									
Torula							1	40	11
Ulocladium									
Colorless/Other Brown*									
Oidium									
Zygomycetes									
Pithomyces									
Background debris (1-5)**	3			3			3		
Sample Volume(liters)	25			25			25		
TOTAL SPORES/M ³	8	320		14	560		9	360	
Revisions:									

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical constitutive is the spore (m^3) divided by the raw count expressed is spore (m^3) . The limit of detection is the analytical constitutive (in spore (m^3) multiplied)

The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Spore Trap Report

			•	-	Date	Sampled	: 04/23/21		
Attn: Phoenix Env				: 04/27/21					
4020 Shipyard Blv	Date Analyzed: 04/27/21								
Wilmington, NC 2		Date Reported: 04/27/21							
						e Revised			
							: 21-21-132-	IAQ-M	
								Lane, Unit 203	
					Project City,				
					SEEML Ref				
TEST METHOD: DIRECT M	ICROSCO	DPY EXAMIN	ATION SE	EML SOP					
Client Sample ID		42321-SM-10			42321-SM-10	5	0	42321-SM-106	
Location		ar Right Bedro			Outside - Front			Outside - Rear	
Lab Sample ID		10427015-05			10427015-05			210427015-059	
Comments	2	10427013-03	1	2	10427013-03	0	2	10427013-033	
Hyphal Fragments	3	120					1	40	
Pollen	3	120		5	200		6	240	
Spore Trap Used		M5		5	 M5		U	240 M5	
opore map used	row of	spores/m ³	%	raw ct.	spores/m ³	%	row of	spores/m ³	%
Alternaria	raw ct.	30165/111	/0	Taw CL	300165/111	/0	raw ct.	spores/111	70
Ascospores		1		30	1200	49	16	640	52
Basidiospores				4	1200	49 7	8	320	26
Basidiospores Bipolaris/Drechslera		+ +		4	100	1	0	320	20
Chaetomium									
	2	80	22	22	990	36	7	280	23
Cladosporium	Z	80	22	22	880	30	/	280	23
Epicoccum									
Cercospora									
Fusarium									
Memnoniella									
Nigrospora		000	70	0	100				
Penicillium/Aspergillus	7	280	78	3	120	5			
Polythrincium									
Rusts		↓ ↓				0			
Smuts/Periconia/Myxomy				2	80	3			
Spegazzinia									
Stachybotrys									
Stemphylium									
Tetraploa									
Torula		+ +							
Ulocladium		+ +							
Colorless/Other Brown*		↓ ↓							
Oidium									
Zygomycetes									
Pithomyces	-			-					
Background debris (1-5)**	3	_		3			3		
Sample Volume(liters)	25			25			25		
TOTAL SPORES/M ³	9	360		61	2440		31	1240	

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore.

The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Augel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667

Texas Lic: LAB1016

Form 18.0 Rev 09 07/30/20

Surface and Bulk Sample Report

	Sulla	ce and Bulk Sample Report			
Date Sampled: 04/23/21					
Attn: Phoenix E	04/27/21				
4020 Shipyard		Date Analyzed:	04/27/21		
Wilmington, NO	C 28403	Date Reported:	04/27/21		
		Date Revised:			
		Project Name:	21-21-132-IAQ-M		
			302 Grass Lane, Unit 203		
		Project City, State ZIP:	Wilmington, NC 28401		
		SEEML Reference #:	210427015		
TEST METHOD: Direct Micro	oscopic Examination (SEEM	L SOP 18)			
Client Sample ID	042321-SM-107				
Location	Within The Bathroom Sink Cabinet				
SEEML Sample ID	210427015-060				
Sample Type	Таре				
	Quantification*				
Hyphal Fragments	М				
Pollen					
General Impressions **	FG				
Fungal Spore:					
Alternaria					
Acremonium					
Ascospores					
Basidiospores					
Bipolaris/Drechslera					
Cercospora					
Chaetomium	М				
Cladosporium					
Curvularia					
Epicoccum					
Fusarium					
Geotrichum sp.					
Memnoniella					
Myxomycetes					
Nigrospora					
Penicillium/Aspergillus					
Pithomyces					
Rusts/Smuts					
Stemphylium					
Tetraploa					
Ulocladium					

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589 AIHA-LAP, LLC EMLAP # 173667 Texas License: LAB1016

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin
Acremonium crotocinigenum	Crotocin
Aspergillus favus	Alfatoxin B, cyclopiazonic acid
Aspergillus fumigatus	Fumagilin, gliotoxin
Aspergillus carneus	Critrinin
Aspergillus clavatus	Cytochalasin, patulin
Aspergillus Parasiticus	Alfatoxin B
Aspergillus nomius	Alfatoxin B
Aspergillus niger	Ochratoxin A, malformin, oxalicacid
Acremonium crotocinigenum	Crotocin
Aspergillus nidulans	Sterigmatocystin
Aspergillus ochraceus	Ochratoxin A, penicillic acid
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin
	Ausdiol, austamide,
Aspergillus ustus	austocystin, brevianamide
Aspergillus terreus	Citreoviridin
	Alternariol, altertoxin, altenuene, altenusin,
Alternaria	tenuazonic acid
Arthrinium	Nitropropionic acid
	Cytochalasin, sporidesmin,
Bioploaris	sterigmatocystin
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin
Cladosporium	Cladosporic acid
Clavipes purpurea	Ergotism
Cylindrocorpon	Trichothecene
Diplodia	Diplodiatoxin
Fusarium	Trichothecene, zearalenone
Fusarium moniliforme	Fumonisins
Emericella nidulans	Sterigmatocystin
Gliocladium	Gliotoxin
	Griseofulvin, dechlorogriseofulvin, epi-
Memnoniella	decholorgriseofulvin, trichodermin,
	trichodermol
Myrothecium	Trichothecene
Paecilomyces	Patulin, viriditoxin
Penicillium aurantiocandidum	Penicillic acid
Penicillium aurantiogriseum	Penicillic acid
Penicillium brasilanum	Penicillic acid
Penicillium brevicompactum	Mycophenolic acid
Penicillium camemberti	Cyclopiazonic acid
Penicillium carneum	Mycophenolic acid, Roquefortine C
Penicillium crateriforme	Rubratoxin

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

April 30, 201

For:

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

Remediation Contractor:

Rhino Demolition 1664 American Way Little River, SC 29577

On-Site Consultant:

Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Shoemoz Vimchamed

Shaenaz Mirmohamed IH Technician

Tomm two

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECTI	ON 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	5
1.5	Cleanup Overview	6
1.6	Post Remediation Verification Testing	6
SECTI	ION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	7
SECTI	ON 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	7
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SECTI	ON 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	8
SECTI	ON 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	8
SECTI	ON 6.0 WASTE CONTROL	
6.1	Waste Disposal	8
SECTI	ON 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	9
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

SITE: 302 Grass Lane, Unit 203, Wilmington, NC 28401

PEC Job #: 21-21-132-IAQ-M

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow.
- Once the HVAC system is shut down, the system shall remain off and isolated until acceptable post remediation results are obtained.

Note: For directional purposes "front" is determined by facing Grass Lane from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation.

Within the bathroom:

- Detach the floor mounted cabinet from the front wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2- foot radius of the affected area when possible.
- Clean all surfaces, furnishings and contents as specified herein under general specifications for primary control areas.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Non-porous, semi-porous, and porous furnishings and contents shall be cleaned. If items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be to determine if they shall be disposed.
- All machine washable porous cloth items shall be cleaned and dried in a household washer and dryer. Other specialty items shall be cleaned by a dry cleaner that specializes in cleaning materials affected with mold. These items shall be removed from affected area(s) and shall not be reintroduced back into the area(s) until acceptable post remediation testing is established. If porous articles cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not re-contaminated (i.e., working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% + /-3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp investigative report dated April 30, 2021.

Phoenix EnviroCorp Chain of Custody dated April 23, 2021.

Analytical report dated April 27, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future exposures will not occur.

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne

PEC Job #: 21-21-132-IAQ-M

concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Analytical Method
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e. broken-pipe-line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2 nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings
-	

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or

PEC Job #: 21-21-132-IAQ-M

equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

PEC Job #: 21-21-132-IAQ-M

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

PEC Job #: 21-21-132-IAQ-M

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

June 15, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-186-IAQ-M - 302 Grass Lane, Apartment 204, Wilmington, NC - Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on June 8, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling to determine airborne mold spore levels and to collect surface samples of suspect visible mold growth.

Background Information: The unit is occupied and fully furnished with content throughout.

The HVAC system was operating in the cool mode set at 74° F upon PEC's arrival and during sampling.

Note: For directional purposes "front" is determined by facing the grass area adjacent to the playground and the parking lot from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

- Apparent water damage within the kitchen cabinet underneath the sink
- Apparent water damage and suspect visible mold growth within the bathroom cabinet underneath the sink

Mold Testing – Surface: A non-viable surface sample was collected from an area of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

Location

Bathroom cabinet underneath the sink

<u>Result</u> **M – FG** *Penicillium/Aspergillus*

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen/living room, the bathroom, the rear right bedroom, the rear left bedroom, and the front left bedroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless*

otherwise noted. Two samples were also collected outdoors for comparative purposes.

Results identified elevated airborne levels of *Penicillium/Aspergillus* within all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the unit ranged from 59.8% – 65.9% with an outdoor reading of 77.3% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%. **Consistent RH levels above 60% is conducive to mold growth.**

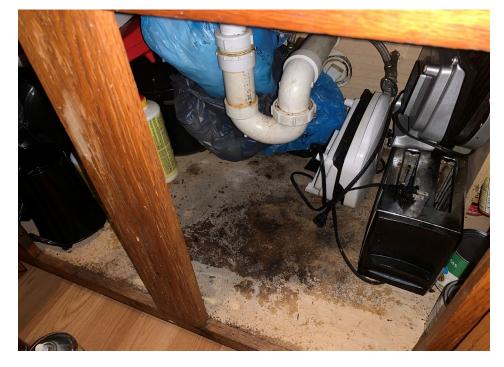
Conclusions: Sample results identified elevated airborne mold spore levels of *Penicillium/Aspergillus* within all sampled locations, as well as surface mold growth and apparent water damage within the unit. Upon request, and for an additional fee, PEC can provide a protocol that outlines mold remediation activities.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Whee Prim


Philip Green IH Technician

Tomm tu

Tommie Green, CIEC Professional Industrial Hygienist

Enclosures

Photo 1

Apparent water damage in the kitchen cabinet underneath the sink

Photo 2

Apparent water damage and suspect visible mold growth in the bathroom cabinet under the sink

Phoenix EnviroCorp

CHAIN OF CUSTODY

LABORATORY TEST REQUEST

Seem | Ref # 210609024 Lab 1D: 077-082

CONTACT: Philip Green	TELEPHONE (910) 397-0370	70 FAX (910) 313-6094 6/8/2021							
PEC Job #: 21-21-186-IAQ	-M SITE ADDRESS:	302 Grass Lane, Apt. 204, Wilmington, NC 28405							
	KMGREEN@PHOENIXENVIROCORP.COM								
SAMPLE TYPE:	NUMBER OF SAMPLES:	TURN AROUND TIME SI							
Spore Trap - Micro Surface Samples		Immediate 2	4 nr 48 r	irX Standard	1				
Surace Samples									
Sample #	Sample		Sample	Lab Analysis	% Relative	Temperature			
	Area		Volume	Requested	Humidity	*F			
060821-PG-01	Kitchen/Living Ro	oom	25L	S001	59.8	77.2			
060821-PG-02	Bathroom		25L	S001	61.2	76.4			
060821-PG-03	Rear Right Bedro	om	25L	S001	63.7	75.7			
060821-PG-04	Rear Left Bedroo	om	25L	S001	64.4	75.0			
060821-PG-05	Front Left Bedro	om	25L	S001	65.9	75.0			
060821-PG-101	Green/Brown VSMG in bathroom ca	binet underneath sink	1 cm sq	S001					
					-				
			-						
These of					and the second	an e contrata a contrata per contrata de la contrat			
	1			and the second					
	Samples acce	osted	- - -						
	ucce	chied							
amples Collected By (Printed	New Jones	Whin Berry		D.1. C: 1					

Samples Collected By (Printed Name and Signature):

(Recition

Date Signed: 6/8/2021

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/8/2021	14:00 PM	Intact	Reichon	uelsym
			AFFILIATION:	AFFILIATION: 6.92

ies.y

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

 \boxtimes

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

<u>Angel Gosnell</u>

Date: 06/09/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			opo	re Trap R		Sample	d: 06/08/21		
Attn: Phoenix En									
4020 Shipyard E				Date Received: 06/09/21 Date Analyzed: 06/09/21					
Wilmington, NC									
. ,			-				d: 06/09/21		
						e Revised			
			-		Proj	ect Name	e: 21-21-186	-IAQ-M	
					Project Project City	t Address	s: 302 Grass	Lane, Apt 204	
					Project City, SEEML Ref	State, ZIF	2: Wilmingto	n, NC 28405	-
TEST METHOD: DIRECT	MICROSC	OPY EXAMIN	ATION S	EEMI SOP	7	erence #	21060902	4	
Client Sample ID		060821-PG-0			060821-PG-02)	T	060821-PG-03	
Location		chen / Living Ro			Bathroom			and the second se	
Lab Sample ID		210609024-07						ear Right Bedroor	
Comments		10609024-07	/	2	210609024-07	8		210609024-079	
Hyphal Fragments		1 1							
Pollen	1	10							
Spore Trap Used	1	40 M5							
	routet		01		M5			M5	
Alternaria	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%
Ascospores			and the state of the state						
Basidiospores	1	10	4						
Bipolaris/Drechslera		40	1	1	40	1	2	80	7
Chaetomium									
Cladosporium	1	40	4						
Curvularia		40	1	1	40	1	1	40	3
Epicoccum									
Cercospora									
Fusarium			alitie elevenede	the second second					
Vemnoniella									
Nigrospora			Constanting of the			1		The second second second	
Penicillium/Aspergillus	87	3480	96	79	3160	00			
Polythrincium				13	3100	98	26	1040	90
Rusts									
Smuts/Periconia/Myxomy	1	40	1						
Spegazzinia									
Stachybotrys									
Stemphylium									
etraploa	1	40	1					Cherrente State State	
orula									
Jlocladium									
Colorless/Other Brown*									
Didium									NA STREET
ygomycetes	and the second								
Pithomyces									
ackground debris (1-5)**	3			3			3		
Sample Volume(liters)	25			25			25		
OTAL SPORES/M ³	91	3640		81	3240		29	1160	

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

Angel Gosnell

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20

Texas Lic: LAB1016

Spore Tran Report

			Sho	re Trap R	eporτ					
Atta: Bhaanin Fr	· .			Date Sampled: 06/08/21						
Attn: Phoenix En		Date	Received	: 06/09/2	1					
4020 Shipyard B	Date Analyzed: 06/09/21									
Wilmington, NC	28403				Date Reported: 06/09/21					
						e Revised				
						ject Name		BE IAO M		
					Projec	t Address	302 Gra	ss Lane, Apt	204	
					Project City,	State ZIP	Wilming	ton NC 2840	204	
					SEEMI Ref	erence # ·	2106090	101, NO 2040	5	
TEST METHOD: DIRECT N	MICROSC	OPY EXAMIN	ATION S	EEML SOP	7		2100030	72-7		
Client Sample ID		060821-PG-04			060821-PG-0	5	T			
Location		ear Left Bedroo			ont Left Bedroo					
Lab Sample ID										
	4	210609024-08	0	2	10609024-08	1				
Comments										
Hyphal Fragments Pollen										
Pollen Spore Trap Used										
opore rrap Used		M5			M5					
Altornoria	raw ct.	spores/m ³	. %	raw ct.	spores/m ³	%				
Alternaria										
Ascospores										
Basidiospores										
Bipolaris/Drechslera									Real Maria	
Chaetomium										
Cladosporium	1	40	3	1	40	3			See Providence	
Curvularia	1	40	3							
Epicoccum		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						and the second second	ACC STREET	
Cercospora										
usarium										
Memnoniella										
Vigrospora										
Penicillium/Aspergillus	34	1360	94	31	1240	97				
Polythrincium								a service service		
Rusts										
Smuts/Periconia/Myxomy				The second	Sector States					
pegazzinia					-					
Stachybotrys					The second second second				Store reactions and	
Stemphylium										
etraploa									Careford States of States	
orula										
llocladium					A STATE OF STATE					
olorless/Other Brown*										
idium									STATE OF CALL MARKED	
ygomycetes										
ithomyces										
ackground debris (1-5)**	3			3		de la constante de la constante				
ample Volume(liters)	25			25						
OTAL SPORES/M ³	36	1440		32	1280					

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters. *Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory 102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Texas Lic: LAB1016

Surface and Bulk Sample Report

[Odife	ce and bulk Sample Report	
Atta: Dhaaring	Envine O	Date Sampled:	06/08/21
Attn: Phoenix I		Date Received:	06/09/21
4020 Shipyard		Date Analyzed:	06/09/21
Wilmington, N	C 28403	Date Reported:	06/09/21
		Date Revised:	
		Project Name:	21-21-186-IAQ-M
			302 Grass lane, Apt 204
		Project City, State ZIP:	
		SEEML Reference #:	
TEST METHOD: Direct Micro	oscopic Examination (SEEN	IL SOP 18)	
Client Sample ID	060821-PG-101		
Location	Green / Brown VSMG In Bathroom Cabinet Underneath Sink		
SEEML Sample ID	210609024-082		
Sample Type	Таре		
	Quantification*		
Hyphal Fragments	Scattered		
Pollen			
General Impressions **	FG		
Fungal Spore:			
Alternaria			
Acremonium			
Ascospores			
Basidiospores			
Bipolaris/Drechslera			
Cercospora			
Chaetomium			
Cladosporium			
Curvularia			
Epicoccum			
usarium			
Geotrichum sp.			
Iemnoniella			
lyxomycetes			
ligrospora			
enicillium/Aspergillus	M		
rithomyces			
Rusts/Smuts			
temphylium			
etraploa			
llocladium			

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

L = 101-1,000 fungal spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589

AIHA-LAP, LLC EMLAP # 173667 Texas License: LAB1016

CHAIN OF CUSTODY

LABORATORY TEST REQUEST SEEMIREF # 2101009028

WILMINGTON, NC 28403	UUDID:099-10 1370 FAX (910) 313-6094 6/8/2021							
ONTACT: Philip Green	TELEPHONE (910) 397-03	7-0370 FAX (910) 313-6094 6/8/2021						
EC Job #: 21-21-186,188,189,190		302 Grass Lane, Wilming	gton, NC 28405	5				
LEASE EMAIL RESULTS TO: KMGREE AMPLE TYPE: Spore Trap - Micro-5 Surface Samples	EN@PHOENIXENVIROCORP.COM NUMBER OF SAMPLES: 2 0							
Sample #	Sampl	e	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature °F		
060821-PG-801	Outside - Front		25L	S001	77.3	81.1		
060821-PG-802	Outside - Rear		25L	S001				
						-		
	4							
	samples ac	cepted						
			1					
Samples Collected By (Printed Name a	nd Signature):	Alu Aur		Date Signed:	6/8/2021			

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/8/2021	14:00 PM	Intact	pliedan	uelsym
			AFFILIATION:	AFFILIATION: Le-9-21

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/09/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

		Date Sampled:	06/08/21					
Attn: Phoenix En	viro Corp.	Date Received:	06/09/21					
4020 Shipyard B	lvd.	Date Analyzed:	06/09/21					
Wilmington, NC 2	28403	Date Reported:	06/09/21					
		Date Revised:						
		Project Name:	21-21-186, 188,189,190-IAQ-M					
		Project Address:	302 Grass Lane					
		Project City, State, ZIP:	Wilmington, NC 28405					
		SEEML Reference # :	210609028					
TEST METHOD: DIRECT M	TEST METHOD: DIRECT MICROSCOPY EXAMINATION SEEML SOP 7							
Client Sample ID	060821-PG-801	060821-PG-802						
Location	Outside- Front	Outside- Rear						

Location	Outside- Front				Outside- Rear					
Lab Sample ID	2	10609028-09	99	210609028-100						
Comments										
Hyphal Fragments										
Pollen				3	120				-	
Spore Trap Used		M5			M5				-	
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%				
Alternaria	2	80	<1							
Ascospores	453	18100	36	120	4800	20				
Basidiospores	615	24600	49	213	8520	36				
Bipolaris/Drechslera	1	40	<1							
Chaetomium										
Cladosporium	177	7080	14	222	8880	37				
Curvularia										
Epicoccum										
Cercospora	2	80	<1							
Fusarium										
Memnoniella										
Nigrospora										
Penicillium/Aspergillus				46	1840	8				
Polythrincium										
Rusts										
Smuts/Periconia/Myxomy	1	40	<1							
Spegazzinia										
Stachybotrys										
Stemphylium										
Tetraploa										
Torula										
Ulocladium										
Colorless/Other Brown*										
Oidium										
Zygomycetes										
Pithomyces										
Background debris (1-5)**	3			3						
Sample Volume(liters)	25			25						
TOTAL SPORES/M ³	1251	50000		601	24000					
Revisions:										

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Augel Gosnell Angel Gosnell, Approved Laboratory Signatory 102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

AIHA-LAP, LLC EMLAP #173667

Texas Lic: LAB1016

Form 18.0 Rev 09 07/30/20

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin
Acremonium crotocinigenum	Crotocin
Aspergillus favus	Alfatoxin B, cyclopiazonic acid
Aspergillus fumigatus	Fumagilin, gliotoxin
Aspergillus carneus	Critrinin
Aspergillus clavatus	Cytochalasin, patulin
Aspergillus Parasiticus	Alfatoxin B
Aspergillus nomius	Alfatoxin B
Aspergillus niger	Ochratoxin A, malformin, oxalicacid
Acremonium crotocinigenum	Crotocin
Aspergillus nidulans	Sterigmatocystin
Aspergillus ochraceus	Ochratoxin A, penicillic acid
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin
	Ausdiol, austamide,
Aspergillus ustus	austocystin, brevianamide
Aspergillus terreus	Citreoviridin
	Alternariol, altertoxin, altenuene, altenusin,
Alternaria	tenuazonic acid
Arthrinium	Nitropropionic acid
	Cytochalasin, sporidesmin,
Bioploaris	sterigmatocystin
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin
Cladosporium	Cladosporic acid
Clavipes purpurea	Ergotism
Cylindrocorpon	Trichothecene
Diplodia	Diplodiatoxin
Fusarium	Trichothecene, zearalenone
Fusarium moniliforme	Fumonisins
Emericella nidulans	Sterigmatocystin
Gliocladium	Gliotoxin
	Griseofulvin, dechlorogriseofulvin, epi-
Memnoniella	decholorgriseofulvin, trichodermin,
	trichodermol
Myrothecium	Trichothecene
Paecilomyces	Patulin, viriditoxin
Penicillium aurantiocandidum	Penicillic acid
Penicillium aurantiogriseum	Penicillic acid
Penicillium brasilanum	Penicillic acid
Penicillium brevicompactum	Mycophenolic acid
Penicillium camemberti	Cyclopiazonic acid
Penicillium carneum	Mycophenolic acid, Roquefortine C
Penicillium crateriforme	Rubratoxin

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	July 2, 2021
For:	Quanesha Mullins Wilmington Housing Authority 1524 S. 16 th Street Wilmington, NC 28401
Remediation Contractor:	Not determined
On-Site Consultant:	Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Tomm two

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECT	ION 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	7
1.6	Post Remediation Verification Testing	7
SECT	ION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	7
SECT	ION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SECT	ION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	9
SECT	ION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SECT	ION 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SECT	ION 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	10
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

PEC Job #: 21-21-186A-IAQ-M

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow. Prior to isolating the vents, the register covers (diffusers) shall be removed, and the supply shall be isolated at the metal boot. Once isolated, the registers and surrounding building materials shall be cleaned.
- The interior of the air handler, rigid duct system, intake box, etc. shall be thoroughly cleaned by an HVAC professional experienced in mold remediation. The interior can be cleaned with mechanical methods that aggressively disturb all interior surfaces and filter the disturbed airborne particulates.

PEC Job #: 21-21-186A-IAQ-M

- Cleaning of components shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris.
- PEC recommends the removal and disposal of the flex ducts when feasible, as well as any interior duct board where cleaning will damage the duct board. Once removed, the remediation contractor shall isolate the connection point where the flex duct and/or duct board was detached with a critical barrier (such as plastic, etc.) to prevent air flow.
- Once the HVAC system components are cleaned or replaced anew, the system shall remain off and isolated until acceptable post remediation results are obtained.
- A written document shall be obtained from the remediation contractor verifying that the HVAC system has been cleaned by an HVAC cleaning company with mold experience. This document shall include the property address and date of services and shall be filed with other mold remediation documents.

Note: For directional purposes "front" is determined by facing the playground/grassy area from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation.

Within the kitchen:

- Detach the floor mounted cabinets (with sink) from the front wall and discard water damaged components (i.e., cabinet floor, etc.).
- Remove all baseboards from the front wall.
- Assess the drywall uncovered by the removal of the specified cabinet and baseboards and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of any affected areas when possible.
- Remove any loose flooring.

Within the bathroom:

- Remove and discard the floor mounted cabinet along the front wall.
- Remove all baseboards from the front and left walls.
- Assess the drywall uncovered by the removal of the specified cabinet and baseboards and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of any affected areas when possible.
- Remove all loose floor tiles.

Throughout the unit (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

• Clean all surfaces, furnishings and contents as specified below under general specifications for primary control areas.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.

Page 5 of 13

- Non-porous, semi-porous, and porous furnishings and contents shall be cleaned. If items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be to determine if they shall be disposed.
- All machine washable porous cloth items shall be cleaned and dried in a household washer and dryer. Other specialty items shall be cleaned by a dry cleaner that specializes in cleaning materials affected with mold. These items shall be removed from affected area(s) and shall not be reintroduced back into the area(s) until acceptable post remediation testing is established. If porous articles cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- Mattresses shall be cleaned utilizing HEPA vacuuming, NOT by pressure extraction or wet methods. If suspect visible mold growth is on the mattress or if the mattress cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be prior to disposal.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- All wall cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.
- Furnishings and contents that are specified for cleaning shall be protected with polyethylene in areas where building components are specified for removal, prior to the removal of building components to avoid cross contamination. The protective covering shall be removed, and the furnishings and contents shall be cleaned prior to post visual inspection and testing.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not re-contaminated (i.e., working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels,

PEC Job #: 21-21-186A-IAQ-M

and the RH level is at or below 40% + -3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp investigative report dated June 15, 2021, and July 2, 2021.

Phoenix EnviroCorp Chain of Custody dated June 8, 2021.

Analytical reports dated June 9, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have

PEC Job #: 21-21-186A-IAQ-M

been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future exposures will not occur.

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Analytical Method

- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e., broken-pipe-line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

Code of Federal Regulation (CFR Publications)

PEC Job #: 21-21-186A-IAQ-M

SITE: 302 Grass Lane, Apartment 204, Wilmington, NC 28405

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2 nd ed. NYCDOH	Standard and Reference Guide for Professional Water Damage Restoration Guidelines on Assessment and Remediation of Fungi in Indoor Environments
ACGIH IAQA 01-2000 ASHRAE 62.2-2007	Bioaerosols: Assessment and Control Recommended Guidelines for Indoor Environments Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical

SITE: 302 Grass Lane, Apartment 204, Wilmington, NC 28405

PEC Job #: 21-21-186A-IAQ-M

boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

June 22, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-187-IAQ-M – 302 Grass Lane, Apartment 205, Wilmington, NC - Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on June 17, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling to determine airborne mold spore levels and to collect surface samples of suspect visible mold growth.

Background Information: The HVAC system was operating in the cool mode set at 66° F upon PEC's arrival and during sampling.

The unit is occupied and fully furnished with contents throughout.

Note: For directional purposes "front" is determined by facing the parking lot off Grass Lane from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

- Apparent water damage and suspect visible mold growth in the kitchen cabinet underneath the sink
- Apparent water damage in the bathroom cabinet underneath sink
- Suspect visible mold growth on the HVAC supply vent in the rear left bedroom
- Suspect visible mold growth on the HVAC supply vent in the rear right bedroom
- Apparent water damage on the popcorn ceiling in the rear right bedroom

Mold Testing – Surface: Non-viable surface samples were collected from areas of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

Location	<u>Result</u>
Kitchen cabinet underneath the sink	M – FG Chaetomium
HVAC supply vent in the rear left bedroom	L – FG Cladosporium

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen/living room, the bathroom, the rear right bedroom, the rear left bedroom, and the front left room. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5)*

liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.

Results indicated acceptable levels of airborne mold spores in all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Moisture Readings: Moisture readings were collected with a Tramex Survey Encounter. Multiple readings were taken to represent areas and materials reported. For drywall products, readings should be below fifty percent (50%). For wood products, normal moisture content should be less than fifteen percent (<15%).

Moisture content measurements were as follows: <u>Rear right bedroom</u>

• Popcorn ceiling = 14%

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the unit ranged from 41.8% – 54.4% with an outdoor reading of 40.2% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%.

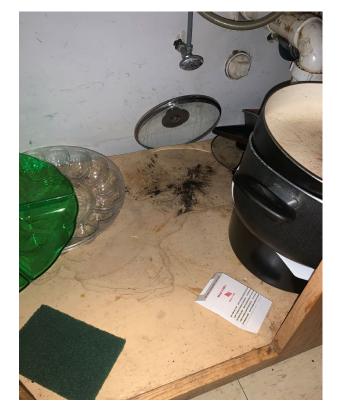
Conclusions: Air sampling within the tested areas did not indicate a problem with the indoor air quality regarding mold. However, apparent water damage and surface mold growth, to include *Chaetomium* was identified within unit. Upon request, and for an additional fee, PEC can provide a protocol that outlines mold remediation activities.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

allei Pum


Philip Green IH Technician

Tomm have

Tommie Green, CIEC Professional Industrial Hygienist


Enclosures

Photo 1

Apparent water damage/suspect visible mold growth in the kitchen cabinet underneath the sink

Photo 2

Apparent water damage in the bathroom cabinet underneath the sink

Photo 3

Suspect visible mold growth on the HVAC supply vent in the rear left bedroom

Photo 4

Suspect visible mold growth on the HVAC supply vent in the rear right bedroom

Photo 5

Apparent water damage to the popcorn ceilin in the rear right bedroom

CHAIN OF CUSTODY

LABORATORY TEST REQUEST

1

ONTACT: Philip Green	DUL Ref #: 21061802 TELEPHONE (910) 397-0370 FAX (910) 313-6094		6/17/2021		49-
EC Job #: 21-21-187-IA	O-M SITE ADDRESS: 302 Grass Lane, Ap	t. 205, Wilmington,	NC 28405		
LEASE EMAIL RESULTS TO	: KMGREEN@PHOENIXENVIROCORP.COM				
AMPLE TYPE: Spore Trap - Micr	0-5 7 Immediate	24 hr 48 h	rX Standard	1	
Surface Sample	s <u>2</u>				
Sample #	Sample Area	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature °F
061721-PG-01	Kitchen/Living Room	25L	S001	41.8	70.9
061721-PG-02	Bathroom	25L	S001	52.9	69.0
061721-PG-03	Rear Right Bedroom	25L	S001	53.3	66.4
061721-PG-04	Rear Left Bedroom	25L	S001	54.4	67.6
061721-PG-05	Front Left Room	25L	S001	52.7	64.5
061721-PG-06	Outside - Front	25L	S001	40.2	90.8
061721-PG-07	Outside - Rear	25L	S001		
061721-PG-101	Black SVMG in kitchen cabinet underneath the sink	1 cm sq	S001T		
061721-PG-102	Black SVMG on HVAC supply vent in rear left bedroom	1 cm sq	S001T		
		Ser	noles	acc	eptal
			V		•
	14				

Samples Collected By (Printed Name and Signature):

Mai Ben

Date Signed: 6/17/2021

a

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/17/2021 1	.3:30:00 PM	Intact	AFFILIATION:	AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

 \boxtimes

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/18/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			opon	e Trap Re		0	00/47/04		
				: 06/17/21					
Attn: Phoenix Env				Date Received: 06/18/21					
4020 Shipyard Bl				Date Analyzed: 06/18/21					
Wilmington, NC 2	8403			Date Reported: 06/18/21					
						e Revised			
						: 21-21-187-			
						Lane, Apt 205			
					Project City,				
TEAT METHOD, DIDEAT N					SEEML Ref	erence # :	210618020)	
TEST METHOD: DIRECT N						2		004704 DO 00	
Client Sample ID	C)61721-PG-0	1	()61721-PG-02	2	-	061721-PG-03	
Location	Kitc	hen / Living Ro	oom		Bathroom		Re	ear Right Bedroo	m
Lab Sample ID	2	10618020-04	.9	2	10618020-05	0		210618020-051	
Comments									
Hyphal Fragments									
Pollen									
Spore Trap Used		M5			M5			M5	
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%
Alternaria				1	40	20			
Ascospores							1	40	13
Basidiospores	6	240	55	2	80	40	2	80	25
Bipolaris/Drechslera									
Chaetomium									
Cladosporium	2	80	18	1	40	20	1	40	13
Curvularia									
Epicoccum									
Cercospora									
Fusarium									
Memnoniella									
Nigrospora									
Penicillium/Aspergillus	3	120	27	1	40	20	4	160	50
Polythrincium									
Rusts									
Smuts/Periconia/Myxomy									
Spegazzinia									
Stachybotrys									
Stemphylium									
Tetraploa									
Torula									
Ulocladium									
Colorless/Other Brown*									
Oidium									
Zygomycetes									
Pithomyces									
Background debris (1-5)**	3			3			3		
Sample Volume(liters)	25			25			25		
TOTAL SPORES/M ³	11	440		5	200		8	320	
Revisions:									

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the

sample volume (in liters) divided by the faw count, expressed in spores/in . The limit of detection is the analytical sensitivity (in spores/in) multiplied by the sample volume (in liters) divided by the divided by the sample volume (in liters) divided by the divided by the sample volume (in liters) divided by the divided by the sample volume (in liters) divided by the divided by the sample volume (in liters) divided by the divided by the divided by the sample volume (in liters) divided by the divided by the sample volume (in liters) divided by the divid

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Spore Trap Report

			0001	e Trap Re		e Sampled:	06/17/21		
Attn: Phoenix Env									
4020 Shipyard Blv				Date Received: 06/18/21 Date Analyzed: 06/18/21					
Wilmington, NC 2									
	0403			Date Reported: 06/18/21 Date Revised:					
							21-21-187-		
					Project City,			Lane, Apt 205	
					SEEML Ref				
TEST METHOD: DIRECT N						erence # .	210010020)	
		061721-PG-04		-		F			
Client Sample ID	(01721-PG-04	4	L C)61721-PG-0	0		061721-PG-06	
Location	Re	ear Left Bedroo	om	F	Front Left Roor	n		Outside - Front	
Lab Sample ID	2	10618020-05	52	2	10618020-05	3		210618020-054	
Comments									
Hyphal Fragments				1	40		7	280	
Pollen									
Spore Trap Used		M5			M5			M5	
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%
Alternaria					1		7	280	4
Ascospores	1	40	7				8	320	4
Basidiospores	9	360	64	4	160	67	131	5240	70
Bipolaris/Drechslera				1					
Chaetomium				1					
Cladosporium	3	120	21	1	40	17	22	880	12
Curvularia									
Epicoccum				1			2	80	1
Cercospora									
Fusarium									
Memnoniella									
Nigrospora									
Penicillium/Aspergillus	1	40	7	1	40	17	13	520	7
Polythrincium									
Rusts									
Smuts/Periconia/Myxomy							4	160	2
Spegazzinia									
Stachybotrys									
Stemphylium									
Tetraploa									
Torula									
Ulocladium									
Colorless/Other Brown*									
Oidium									
Zygomycetes									
Pithomyces									
Background debris (1-5)**	3			3			3		
Sample Volume(liters)	25			25			25		
TOTAL SPORES/M ³	14	560		6	240		187	7480	
Revisions:				. ~			1.07	7 - 100	

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical constituity is the spore (m^3) divided by the raw count, expressed is spore (m^3) . The limit of detection is the analytical constituity (in spore (m^3) multiplied

The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Spore Trap Report

			oporo	Date Sampled: 06/17/21				
Attn: Phoenix Env	viro Corn			Date Received: 06/18/21				
4020 Shipyard Bl				Date Analyzed: 06/18/21				
Wilmington, NC 2				Date Reported: 06/18/21				
vviimingion, NC 2	0403			Date Revised:				
				Project Name: 21-21-187-IAQ-M				
				Project Address: 302 Grass Lane, Apt 2	05			
				Project City, State, ZIP: Wilmington, NC 28405				
				SEEML Reference # : 210618020)			
TEST METHOD: DIRECT N								
Client Sample ID)61721-PG-07						
		Outside - Rear						
Location								
Lab Sample ID	2	10618020-05	5					
Comments		-						
Hyphal Fragments	6	240						
Pollen								
Spore Trap Used		M5						
	raw ct.	spores/m ³	%					
Alternaria	4	160	3					
Ascospores	10	400	7					
Basidiospores	78	3120	56					
Bipolaris/Drechslera								
Chaetomium								
Cladosporium	40	1600	29					
Curvularia								
Epicoccum	1	40	<1					
Cercospora								
Fusarium								
Memnoniella								
Nigrospora								
Penicillium/Aspergillus								
Polythrincium								
Rusts								
Smuts/Periconia/Myxomy	6	240	4					
Spegazzinia								
Stachybotrys								
Stemphylium								
Tetraploa								
Torula								
Ulocladium								
Colorless/Other Brown*								
Oidium								
Zygomycetes								
Pithomyces								
Background debris (1-5)**	3							
Sample Volume(liters)	25							
TOTAL SPORES/M ³	139	5560						

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore.

The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Augel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667

Texas Lic: LAB1016

Form 18.0 Rev 09 07/30/20

Surface and Bulk Sample Report

	Julia	ce and bulk Samp		00/17/01
			Date Sampled:	
Attn: Phoenix El			Date Received:	
4020 Shipyard			Date Analyzed:	
Wilmington, NC	28403		Date Reported:	06/18/21
			Date Revised:	
			Project Name:	21-21-187-IAQ-M
			Project Address:	302 Grass Lane, Apt 205
			Project City, State ZIP:	Wilmington, NC 28405
			SEEML Reference #:	210618020
TEST METHOD: Direct Micros	scopic Examination (SEEM	IL SOP 18)		
Client Sample ID	061721-PG-101	061721-PG-102		
Location	Black SVING In Kitchen Cabinet Underneath The Sink	Black SVMG ON HVAC Supply Vent In Rear Left Bedroom		
SEEML Sample ID	210618020-056	210618020-057		
Sample Type	Таре	Таре		
	Quantification*	Quantification*		
Hyphal Fragments	М	М		
Pollen				
General Impressions **	FG	FG		
Fungal Spore:				
Alternaria				
Acremonium				
Ascospores				
Basidiospores				
Bipolaris/Drechslera				
Cercospora				
Chaetomium	М			
Cladosporium		L		
Curvularia				
Epicoccum				
Fusarium				
Geotrichum sp.				
Memnoniella				
Myxomycetes				
Nigrospora				
Penicillium/Aspergillus				
Pithomyces				
Rusts/Smuts				
Stemphylium Tetraploa				

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

 $\label{eq:Quantification} \ensuremath{\mathsf{Q}}\xspace{-1mu} \en$

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin
Acremonium crotocinigenum	Crotocin
Aspergillus favus	Alfatoxin B, cyclopiazonic acid
Aspergillus fumigatus	Fumagilin, gliotoxin
Aspergillus carneus	Critrinin
Aspergillus clavatus	Cytochalasin, patulin
Aspergillus Parasiticus	Alfatoxin B
Aspergillus nomius	Alfatoxin B
Aspergillus niger	Ochratoxin A, malformin, oxalicacid
Acremonium crotocinigenum	Crotocin
Aspergillus nidulans	Sterigmatocystin
Aspergillus ochraceus	Ochratoxin A, penicillic acid
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin
	Ausdiol, austamide,
Aspergillus ustus	austocystin, brevianamide
Aspergillus terreus	Citreoviridin
	Alternariol, altertoxin, altenuene, altenusin,
Alternaria	tenuazonic acid
Arthrinium	Nitropropionic acid
	Cytochalasin, sporidesmin,
Bioploaris	sterigmatocystin
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin
Cladosporium	Cladosporic acid
Clavipes purpurea	Ergotism
Cylindrocorpon	Trichothecene
Diplodia	Diplodiatoxin
Fusarium	Trichothecene, zearalenone
Fusarium moniliforme	Fumonisins
Emericella nidulans	Sterigmatocystin
Gliocladium	Gliotoxin
	Griseofulvin, dechlorogriseofulvin, epi-
Memnoniella	decholorgriseofulvin, trichodermin,
	trichodermol
Myrothecium	Trichothecene
Paecilomyces	Patulin, viriditoxin
Penicillium aurantiocandidum	Penicillic acid
Penicillium aurantiogriseum	Penicillic acid
Penicillium brasilanum	Penicillic acid
Penicillium brevicompactum	Mycophenolic acid
Penicillium camemberti	Cyclopiazonic acid
Penicillium carneum	Mycophenolic acid, Roquefortine C
Penicillium crateriforme	Rubratoxin

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	July 23, 2021
For:	Quanesha Mu

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28405

Remediation Contractor:

On-Site Consultant:

Not determined

Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Shoemong V finnchamed

Shaenaz Mirmohamed IH Technician

Tomm tu

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECT	FION 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	6
1.6	Post Remediation Verification Testing	6
SECT	FION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	7
SECT	FION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SECT	FION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	8
SECT	FION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SECI	FION 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SECT	FION 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	10
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

SITE: 302 Grass Lane, Unit 205, Wilmington, NC 28405

PEC Job #: 21-21-187A-IAQ-M

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow.
- Once the HVAC system is shut down, the system shall remain off and isolated until acceptable post remediation results are obtained.

Note: For directional purposes "front" is determined by facing Grass Lane from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation. All non-stable furnishings and contents shall be removed from the containment area/primary control area prior to specified remediation to avoid cross contamination of furnishings and contents. If elected, said furnishings and contents can be precleaned (i.e., HEPA vacuum, etc.) and stored in the primary control area, but shall be protected (i.e., covered with poly, etc.) to avoid cross contamination.

Within the kitchen:

- Detach the floor mounted cabinet from the front and rear walls, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2- foot radius of the affected area when possible.
- Clean all remaining surfaces as specified herein under general specifications for primary control areas.

Within the bathroom:

- Detach the floor mounted cabinet from the front wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2- foot radius of the affected area when possible.
- Due to the reported leak in the front wall, remove the baseboard from the front wall to allowing access to thoroughly inspect the wall for apparent water damage/suspect visible mold growth and remove any affected drywall and extend the drywall removal within a 2- foot radius of the affected area when possible.
- Clean all remaining surfaces as specified herein under general specifications for primary control areas.

Within the rear right bedroom, and the rear left bedroom (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

• Clean suspect visible mold growth (identified as Cladosporium in the rear left bedroom in PEC's report dated June 22, 2021) on and around the HVAC supply vents.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- In areas where drywall removal is specified around windows and doors, remove trim boards. The door casing(s) shall also be assessed to determine if they have sustained mold/water damage. If so, they shall be cleaned, or removed.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water

damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.

- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not recontaminated (i.e., working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% + /-3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

SITE: 302 Grass Lane, Unit 205, Wilmington, NC 28405

PEC Job #: 21-21-187A-IAQ-M

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp initial investigative report dated June 22, 2021.

Phoenix EnviroCorp investigative report dated July 23, 2021.

Phoenix EnviroCorp Chain of Custody dated June 17, 2021, and July 15, 2021.

Analytical reports dated June 18, 2021, and July 16, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future exposures will not occur.

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue.

SITE: 302 Grass Lane, Unit 205, Wilmington, NC 28405

PEC Job #: 21-21-187A-IAQ-M

Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Analytical Method
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e. broken-pipe-line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

Code of Federal Regulation (CFR Publications)

Respiratory Protection
Specifications for Accident Prevention, Signs and Tags
Personal Protective Equipment
Hazard Communication
Occupational Foot Protection
Head Protection
Hearing Protection
Eye and Face Protection
Electrical General Requirements
Safety General Requirements
Demolition, Chutes
Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2 nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments

SITE: 302 Grass Lane, Unit 205, Wilmington, NC 28405

PEC Job #: 21-21-187A-IAQ-M

ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic

SITE: 302 Grass Lane, Unit 205, Wilmington, NC 28405

PEC Job #: 21-21-187A-IAQ-M

disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

SITE: 302 Grass Lane, Unit 205, Wilmington, NC 28405

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile

SITE: 302 Grass Lane, Unit 205, Wilmington, NC 28405

PEC Job #: 21-21-187A-IAQ-M

Phenolic Compounds	Neoprene				
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)				
Detergents	Latex				

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

June 15, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-189-IAQ-M - 302 Grass Lane, Apartment 207, Wilmington, NC - Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on June 8, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling to determine airborne mold spore levels and to collect surface samples of suspect visible mold growth.

Background Information: The resident reported a leak in the bathroom, hot water room, and in the kitchen.

The unit is occupied, fully furnished with contents throughout.

The HVAC system was operating in the cool mode, set at 72° F upon PEC's arrival and during sampling.

Note: For directional purposes "front" is determined by facing the parking lot off Grass Lane from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

- Apparent water damage within the bathroom cabinet underneath the sink
- Apparent water damage on the floor in the bathroom near the bathtub
- Apparent water damage within the kitchen cabinet underneath the sink
- Suspect visible mold growth and rust on the HVAC supply vent in the bathroom

Mold Testing – Surface: A non-viable surface sample was collected from an area of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

<u>Location</u> HVAC supply vent in the bathroom Result VL – MFG Basidiospores Scattered Spores – Bipolaris/Drechslera VL – MFG Cladosporium Scattered Spores – Epicoccum **Mold Testing** – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen/living room, the bathroom, the rear right bedroom, and the rear left bedroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.*

Results indicated acceptable levels of airborne mold spores in all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the residence ranged from 49.7% - 51.7% with an outdoor RH level of 77.3% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%.

Conclusions: Air sampling within the tested areas did not indicate a problem with the indoor air quality regarding mold, however, minimal surface mold growth (*Basidiospores*, and *Cladosporium*) was identified, in addition to apparent water damage.

Upon request and for an additional fee, PEC can conduct additional investigative activities and provide a mold remediation protocol if needed.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Whee Prim

Philip Green IH Technician

Tomm two

Tommie Green, CIEC Professional Industrial Hygienist

Enclosures

Photo 1

Apparent water damage in the bathroom cabinet underneath the sink

Photo 2

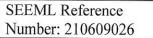
Apparent water damge on the floor in the bathroom near the bathtub

Photo 3

Apparent water damage in the kitchen cabinet underneath the sink

Photo 4

Suspect visible mold growth and rust on the HVAC supply vent in the bathroom



LABORATORY TEST REQUEST

ONTACT: Philip Green	Sepon Ref # 21 TELEPHONE (910) 397-0370	FAX (910) 313-6094	1	6/8/2021		1-201
			7 14/1 - Jacoban	NC 2940E		
PEC Job #: 21-21-189-IAQ-M	SITE ADDRESS:	302 Grass Lane, Apt. 20	/, Wilmington,	NC 28405		
LEASE EMAIL RESULTS TO: KI	MGREEN@PHOENIXENVIROCORP.COM NUMBER OF SAMPLES:	TURN AROUND TIME SP	ECIFIED:	<u>16. Anna san san dan san san</u>		
SAMPLE TYPE: Spore Trap - Micro-5	NUMBER OF SAMPLES.	Immediate 2	4 hr 48 h	rX Standard		
Surface Samples	1					
	Sample		Sample	Lab Analysis	% Relative	Temperature *F
Sample #	Area		Volume	Requested	Humidity	F
060821-PG-401	Kitchen/Living Ro	oom	25L	S001	49.7	75.4
060821-PG-402	Bathroom		25L	S001	51.4	74.7
060821-PG-403	Rear Right Bedro	oom	25L	S001	51.7	73.7
060821-PG-404	Rear Left Bedro	om	25L	S001	50.6	74.0
060821-PG-501	Black VSMG/Rust on HVAC supp	ly vent in bathroom	1 cm sq	S001		
000821-PG-501	Black for for Kabe an Anno sept	A REAL PROPERTY OF A PROPERTY	and the second second	and the second s		
						+
						1
				1		1
	and the second		1			
		A CONTRACTOR OF A CONTRACTOR	all Branches and		-	
						-
	10000/05 Mil	antod				
	samples acc	the ch				
		•				
					J	
	News and Clanaburg):	Alectron		Date Signed	: 6/8/202	21
Samples Collected By (Printed	Name and Signature !!			Sara Signed		

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/8/2021	14:00 PM	Intact	Rectan	uelym
			AFFILIATION:	AFFILIATION: 6.9.21

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/09/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			Spor	e Trap Re	eport					
					Date	Sampled	: 06/08/21			
Attn: Phoenix Enviro Corp.					Date	Received	: 06/09/21			
4020 Shipyard Blvd.					Date Analyzed: 06/09/21					
Wilmington, NC 2	28403			Date Reported: 06/09/21						
						e Revised				
							: 21-21-189	-IAQ-M		
								Lane, Apt 207		
					Project City,	State ZIP	Wilmington	NC 28405		
	_			·····	SEEML Ref					
TEST METHOD: DIRECT N	MICROSCO	OPY EXAMIN	ATION SI	EEML SOP	7		21000002	,		
Client Sample ID	the state of the s	60821-PG-40			60821-PG-40	2	1 ()60821-PG-403	2	
	-00					2				
Location	Kito	chen / Living Ro	om		Bathroom		Re	ear Right Bedroo	m	
Lab Sample ID	2	10609026-08	8	2	10609026-08	9		210609026-090)	
Comments										
Hyphal Fragments							1	40		
Pollen	1	40								
Spore Trap Used		M5	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		M5			M5		
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	
Alternaria	1	40	<1							
Ascospores	6	240	6	2	80	12	3	120	7	
Basidiospores	21	840	19	4	160	24	19	760	42	
Bipolaris/Drechslera	1	40	<1							
Chaetomium										
Cladosporium	67	2680	61	8	320	47	20	800	44	
Curvularia	2	80	2				1			
Epicoccum										
Cercospora										
Fusarium										
Vemnoniella										
Nigrospora										
Penicillium/Aspergillus	11	440	10	3	120	18	3	120	7	
Polythrincium								120	in the second	
Rusts						and a second state second				
Smuts/Periconia/Myxomy										
Spegazzinia										
Stachybotrys										
Stemphylium										
Tetraploa									1000	
Forula										
Jlocladium										
Colorless/Other Brown*										
Didium									a strange and a	
Zygomycetes										
Pithomyces								Net States and States		
Background debris (1-5)**	3			3	All and a second second		3		(Transferra	
Sample Volume(liters)	25			25			25			
TOTAL SPORES/M ³	109	4360		17	680		45	1800		

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell, Approved Laboratory Signatory

Angel Gosnell

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20 Texas Lic: LAB1016

Spore Trap Report

			Spor	e Trap Re	eport				
					E	Date Sample	d: 06/08/21		
Attn: Phoenix Env		Date Received: 06/09/21							
4020 Shipyard Bl		Date Analyzed: 06/09/21							
Wilmington, NC 2	28403					ate Reporte			
				1000 C		Date Revise			****
						Project Nam		9-IAO-M	
								s Lane, Apt	207
					Proiect C	ity, State, ZI	P: Wilminat	on, NC 2840	5
					SEEML	Reference #	: 2106090	26	0
TEST METHOD: DIRECT N	/IICROSC	OPY EXAMIN	ATION S	EML SOP	7				
Client Sample ID		60821-PG-404		T			1		
Location				1					
	R	ear Left Bedroo	m						
Lab Sample ID	2	10609026-09	1					()	
Comments						and the second second second			
Hyphal Fragments									
Pollen									
Spore Trap Used		M5			t.				
	raw ct.	spores/m ³	%						
Alternaria								-	
Ascospores	2	80	9				and sealed		
Basidiospores	6	240	27						
Bipolaris/Drechslera								N DAGE STATES	
Chaetomium									
Cladosporium	13	520	59			and Republic State			
Curvularia							1		cents shericales
Epicoccum		A STREET STREET				and the second of			
Cercospora									
Fusarium					A STATE				1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -
Memnoniella									
Nigrospora									
Penicillium/Aspergillus	1	40	5						
Polythrincium							an alternation of the		
Rusts					The second second				
Smuts/Periconia/Myxomy									
Spegazzinia									
Stachybotrys									Section Section
Stemphylium									
Tetraploa						The sector sector			
Forula		1.00	•						
Jlocladium									and deserved
Colorless/Other Brown*	9. A.								
Didium									
Zygomycetes									
Pithomyces									
Background debris (1-5)**	3								
Sample Volume(liters)	25								
TOTAL SPORES/M ³	22	880							

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell, Approved Laboratory Signatory

Angel Gosnell

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20 Texas Lic: LAB1016

Surface and Bulk Sample Report

	Ourie	ace and Bulk Sample Report	
Atta: Bhaaniy I		Date Sampled:	
Attn: Phoenix E		Date Received:	
4020 Shipyard		Date Analyzed:	06/09/21
Wilmington, N	C 28403	Date Reported:	06/09/21
		Date Revised:	
		Project Name:	21-21-189-JAQ-M
		Project Address:	302 Grass Lane, Apt 207
		Project City, State ZIP:	Wilmington, NC 28405
		SEEML Reference #:	210609026
TEST METHOD: Direct Micro	oscopic Examination (SEEN	IL SOP 18)	
Client Sample ID	060821-PG-501		
Location	Black VSMG/ Rust on HVAC Supply Vent in Bathroom		
SEEML Sample ID	210609026-092		
Sample Type	Таре		
	Quantification*		
Hyphal Fragments	Scattered		
Pollen	Scattered		
General Impressions **	MFG		
Fungal Spore:			
Alternaria			
Acremonium			
Ascospores			
Basidiospores	VL		
Bipolaris/Drechslera	Scattered Spores		
Cercospora			
Chaetomium			
Cladosporium	VL		
Curvularia			
Epicoccum	Scattered Spores		
Fusarium			
Geotrichum sp.			
Memnoniella			
Myxomycetes			
Nigrospora			
Penicillium/Aspergillus			
Pithomyces			
Rusts/Smuts			
Stemphylium			
Tetraploa			
Ulocladium			

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589

Form 46.0 Rev 6 01/21/20

Texas License: LAB1016

AIHA-LAP, LLC EMLAP # 173667

CHAIN OF CUSTODY

LABORATORY TEST REQUEST SEEMIREF # 2101009028

WILMINGTON, NC 28403				cub II	2:09	9 - 10
ONTACT: Philip Green	0370 FAX (910) 313-6094 6/8/2021					
EC Job #: 21-21-186,188,189,190		302 Grass Lane, Wilming	gton, NC 28405	5		
LEASE EMAIL RESULTS TO: KMGREE AMPLE TYPE: Spore Trap - Micro-5 Surface Samples	EN@PHOENIXENVIROCORP.COM NUMBER OF SAMPLES: 2 0	TURN AROUND TIME SP		rX Standard		
Sample #	Sampl	e	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature °F
060821-PG-801	Outside - Front		25L	S001	77.3	81.1
060821-PG-802	Outside - Rear		25L	S001		
						-
	4					
	samples ac	cepted				
			1			
Samples Collected By (Printed Name a	nd Signature):	Alu Aur		Date Signed:	6/8/2021	

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
6/8/2021	14:00 PM	Intact	pliedan	uelsym
			AFFILIATION:	AFFILIATION: Le-9-21

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 06/09/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

		Date Sampled:	06/08/21				
Attn: Phoenix En	viro Corp.	Date Received:	06/09/21				
4020 Shipyard B	lvd.	Date Analyzed:	06/09/21				
Wilmington, NC 2	28403	Date Reported:	06/09/21				
		Date Revised:					
Project Name: 21-21-186, 188,189,190-							
		Project Address:	302 Grass Lane				
		Project City, State, ZIP:	Wilmington, NC 28405				
		SEEML Reference # :	210609028				
TEST METHOD: DIRECT M	TEST METHOD: DIRECT MICROSCOPY EXAMINATION SEEML SOP 7						
Client Sample ID	060821-PG-801	060821-PG-802					
Location	Outside- Front	Outside- Rear					

Location	Outside- Front		Outside- Rear					
Lab Sample ID	2	10609028-09	99	210609028-100				
Comments								
Hyphal Fragments								
Pollen				3	120			-
Spore Trap Used		M5			M5			-
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%		
Alternaria	2	80	<1					
Ascospores	453	18100	36	120	4800	20		
Basidiospores	615	24600	49	213	8520	36		
Bipolaris/Drechslera	1	40	<1					
Chaetomium								
Cladosporium	177	7080	14	222	8880	37		
Curvularia								
Epicoccum								
Cercospora	2	80	<1					
Fusarium								
Memnoniella								
Nigrospora								
Penicillium/Aspergillus				46	1840	8		
Polythrincium								
Rusts								
Smuts/Periconia/Myxomy	1	40	<1					
Spegazzinia								
Stachybotrys								
Stemphylium								
Tetraploa								
Torula								
Ulocladium								
Colorless/Other Brown*								
Oidium								
Zygomycetes								
Pithomyces								
Background debris (1-5)**	3			3				
Sample Volume(liters)	25			25				
TOTAL SPORES/M ³	1251	50000		601	24000			
Revisions:								

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Augel Gosnell Angel Gosnell, Approved Laboratory Signatory 102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

AIHA-LAP, LLC EMLAP #173667

Texas Lic: LAB1016

Form 18.0 Rev 09 07/30/20

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin				
Acremonium crotocinigenum	Crotocin				
Aspergillus favus	Alfatoxin B, cyclopiazonic acid				
Aspergillus fumigatus	Fumagilin, gliotoxin				
Aspergillus carneus	Critrinin				
Aspergillus clavatus	Cytochalasin, patulin				
Aspergillus Parasiticus	Alfatoxin B				
Aspergillus nomius	Alfatoxin B				
Aspergillus niger	Ochratoxin A, malformin, oxalicacid				
Acremonium crotocinigenum	Crotocin				
Aspergillus nidulans	Sterigmatocystin				
Aspergillus ochraceus	Ochratoxin A, penicillic acid				
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin				
	Ausdiol, austamide,				
Aspergillus ustus	austocystin, brevianamide				
Aspergillus terreus	Citreoviridin				
	Alternariol, altertoxin, altenuene, altenusin,				
Alternaria	tenuazonic acid				
Arthrinium Nitropropionic acid					
	Cytochalasin, sporidesmin,				
Bioploaris	sterigmatocystin				
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin				
Cladosporium	Cladosporic acid				
Clavipes purpurea	Ergotism				
Cylindrocorpon	Trichothecene				
Diplodia	Diplodiatoxin				
Fusarium	Trichothecene, zearalenone				
Fusarium moniliforme	Fumonisins				
Emericella nidulans	Sterigmatocystin				
Gliocladium	Gliotoxin				
	Griseofulvin, dechlorogriseofulvin, epi-				
Memnoniella	decholorgriseofulvin, trichodermin,				
	trichodermol				
Myrothecium	Trichothecene				
Paecilomyces	Patulin, viriditoxin				
Penicillium aurantiocandidum	Penicillic acid				
Penicillium aurantiogriseum	Penicillic acid				
Penicillium brasilanum	Penicillic acid				
Penicillium brevicompactum	Mycophenolic acid				
Penicillium camemberti	Cyclopiazonic acid				
Penicillium carneum	Mycophenolic acid, Roquefortine C				
Penicillium crateriforme	Rubratoxin				

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

July 21, 2021

For:

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28405

Remediation Contractor:

On-Site Consultant:

Not determined

Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Shoemong Minnchamed

Shaenaz Mirmohamed IH Technician

Tomm hu

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SEC	FION 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	6
1.6	Post Remediation Verification Testing	6
SEC1	FION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	7
SEC1	FION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SEC1	FION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	8
SEC1	FION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SEC1	FION 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SEC	ΓΙΟΝ 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	10
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 **Project Set Up**

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute =Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

SITE: 302 Grass Lane, Unit 207, Wilmington, NC 28405

PEC Job #: 21-21-189A-IAQ-M

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow.
- Once the HVAC system is shut down, the system shall remain off and isolated until acceptable post remediation results are obtained.

Note: For directional purposes "front" is determined by facing Grass Lane from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation. All non-stable furnishings and contents shall be removed from the containment area/primary control area prior to specified remediation to avoid cross contamination of furnishings and contents. If elected, said furnishings and contents can be precleaned (i.e., HEPA vacuum, etc.) and stored in the primary control area, but shall be protected (i.e., covered with poly, etc.) to avoid cross contamination.

Within the bathroom:

- Due to the reported leak, etc., detach the cabinet from the front wall to allow access to all walls, to thoroughly inspect the walls for apparent water damage/suspect visible mold growth and clean or remove any affected drywall accordingly (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.
- Remove the vinyl flooring entirely, assess the wood floorboards for apparent water damage/suspect visible mold growth and remove or clean any affected floorboard accordingly (i.e., floorboard with apparent water damage/suspect visible mold growth).

Within the kitchen:

• Due to the reported leak, etc., detach the cabinet from the right wall and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.

Within the kitchen, the bathroom, and the water heater closet (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

- Clean all remaining surfaces as specified herein under general specifications for primary control areas.
- Areas of specified subflooring removal shall be sealed with poly (i.e., critical barrier) after cleaning, but before HEPA air scrubbing after cleaning, to prevent air flow from areas outside the containment area. An access door (i.e., poly flap taped in place, zipper, etc.) shall be installed in the critical barrier for easy access to conduct a visual inspection of the building materials behind the critical barrier.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water

damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.

- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not recontaminated (i.e. working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% + /-3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

SITE: 302 Grass Lane, Unit 207, Wilmington, NC 28405

PEC Job #: 21-21-189A-IAQ-M

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp initial investigative report dated June 15, 2021.

Phoenix EnviroCorp investigative report dated July 21, 2021.

Phoenix EnviroCorp Chain of Custody dated June 8, 2021, July 9, 2021.

Analytical reports dated June 9, 2021, and July 12, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future exposures will not occur.

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue.

SITE: 302 Grass Lane, Unit 207, Wilmington, NC 28405

PEC Job #: 21-21-189A-IAQ-M

Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 **Responsibilities of the CIEC/CIE/IH**

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Analytical Method
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e. broken-pipe-line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2 nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments

SITE: 302 Grass Lane, Unit 207, Wilmington, NC 28405

PEC Job #: 21-21-189A-IAQ-M

ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic

SITE: 302 Grass Lane, Unit 207, Wilmington, NC 28405

PEC Job #: 21-21-189A-IAQ-M

disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile

PEC Job #: 21-21-189A-IAQ-M

Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

302 Grass Lane, Unit 209 Wilmington, NC 28405 Page 1 of 2

May 5, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-146-IAQ-M; 302 Grass Lane, Unit 209, Wilmington, NC – Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on May 3, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling to determine airborne mold spore levels and to collect surface samples of suspect visible mold growth.

Background Information: The client reported that a year ago there was a leak from the washing machine.

The HVAC system was off upon PEC's arrival and during sampling.

Note: For directional purposes, "front" is determined by facing Grass Lane from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

• No suspect visible mold growth observed

Mold Testing – Air: Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the rear left bedroom, the rear right bedroom, the bathroom, the kitchen/living room, and the front bedroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.*

Results indicated acceptable levels of airborne mold spores in all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/

Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the residence ranged from 60.9% - 64.6% with an outdoor RH level of 66.5% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%. **Consistent RH levels above 60% is conducive to mold growth.**

Conclusions: Air sampling within the tested areas did not indicate a problem with the indoor air quality regarding mold, and there was no suspect visible mold growth observed.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Shoemory Vimchamed

Shaenaz Mirmohamed IH Technician

Enclosures

Jour An

Tommie Green, CIEC Professional Industrial Hygienist

CHAIN OF CUSTODY

LABORATORY TES	T REQUEST
----------------	-----------

ONTACT:	Shaenaz M	monameu	TELEPHONE (910) 397-03	10 PAX (910) 313-	0099	Sample date:	J. C. 5/3/2021	h. s. h.
EC Job #:	the second s	and a second			ne, Unit 209, Wilr	nington, NC 284	105	
AMPLE TYPE Spo	L RESULTS 1 : pre Trap - M urface Samp	cro-5	@PHOENIXENVIROCORP.CC NUMBER OF SAMPLES: 5	TURN AROUN	D TIME SPECIFIE te 24 hr		Standard	
Samp	le #		Sampl Area	e	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperatur 'F
050321-	SM-201		Rear left bedroor	n	25L	S001	60.9	80.5
050321-	SM-202		Rear right bedroo	m	25L	S001	62.6	80.5
050321-	SM-203		Bathroom		25L	S001	63.5	80.6
050321-	SM-204		Kitchen/living roo	m	25L	S001	64.6	80.5
050321-	SM-205		Front bedroom		25L	S001	61.5	80.1
							n an San San San San San San San San San	-
					Seu	ples	acc	pty
						4		
	and the second second			n an San San San				
			0000000					
icità - any again ang ara								
				a —				
ampies Collec	ted By (Prin	ted Name and	Signature):	Jemehand		Date Signed:	5/3/2021	
			CHAIN OF	CUSTODY RI	CORD			
DATE:	Time:	Condition of Samples:	RELINQUIS (Printed Name as				TED BY:	
5/3/2021	15:00	Intact		Kindlamed		(Printed Name	and signatur	e)
			AFFILIATION:		AFFILIATION	\cap	\bigcirc	~

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

And Gonell

Date: 05/04/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

Attn: Phoenix Enviro Corp.						Sampled			
4020 Shipyard Blvd.						Received:			
Wilmington, NC 28403				Date Analyzed: 05/04/21 Date Reported: 05/04/21					
www.initigton, NC	20403								
						e Revised:			
					Proj	ect Name:	21-21-146	-IAQ-M	
		9-9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1						Lane Unit 209	-
					Project City, S	State, ZIP:	Wilmington	n, NC 28405	
TEST METHOD: DIRECT	AICPOSC				SEEML Refe	erence # :	21050400	3	
Client Sample ID		50321-SM-20				-			
	Ĺ	JJJJJZ 1-3IVI-20	1		50321-SM-20	2	(050321-SM-203	
Location	R	ear Left Bedroo	m	Re	ar Right Bedroo	om		Bathroom	
Lab Sample ID	2	210504008-02	1	2	10504008-02	2	ļ,	210504008-023	
Comments			·			6	<u> </u>	10504008-023	
Hyphal Fragments					1				
Pollen									
Spore Trap Used	Loting	M5	the second second	8	M5			M5	
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%
Alternaria						70		spores/m	70
Ascospores				3	120	27	1	40	20
Basidiospores	6	240	29	2	80	18	1	40	20
Bipolaris/Drechslera						10		+0	20
Chaetomium									
Cladosporium	6	240	29	2	80	18	3	120	60
Curvularia						10	0	120	00
Epicoccum									
Cercospora									
Fusarium									
Memnoniella									
Nigrospora									Received All
Penicillium/Aspergillus	9	360	43	3	120	27			
Polythrincium									
Rusts									
Smuts/Periconia/Myxomy				1	40	9			
Spegazzinia									
Stachybotrys									
Stemphylium									
Tetraploa									a forder av
Torula									
Jlocladium			S. Carlo					Martin Internet	
Colorless/Other Brown*									
Didium									
Zygomycetes									
Pithomyces						and the second			
Background debris (1-5)**	3			3			3		
Sample Volume(liters)	25			25			25		
TOTAL SPORES/M ³	21	840		11	440		5	200	

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Texas Lic: LAB1016

Form 18.0 Rev 09 07/30/20

Page 2 of 13

Spore Trap Report

			•	еттарк		Sampled	05/03/21		
Attn: Phoenix Enviro Corp.							05/04/21		
4020 Shipyard Blvd.				Date Analyzed: 05/04/21					
Wilmington, NC				05/04/21					
			Revised						
							21-21-146		
					Project	Address	302 Grass	Lane Unit 2	00
					Project City, S	State ZIP	Wilmingto	n NC 28405	09
					SEEMI Refe	erence # ·	21050400	8	
TEST METHOD: DIRECT I	MICROSC	OPY EXAMIN	ATION SE	EML SOP	7		21000400	0	
Client Sample ID		050321-SM-20			50321-SM-20	5	1		
Location	Kite	chen / Living Ro	om		Front Bedroom				
Lab Sample ID	2	210504008-024	4	1 2	10504008-02	5			
Comments						J			
Hyphal Fragments					1			1	
Pollen									
Spore Trap Used		M5			M5			1	
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%		Т	- T
Alternaria								1	
Ascospores				1	40	20			an and a star
Basidiospores				2	80	40			
Bipolaris/Drechslera			10. Xe ⁿ i -			10			
Chaetomium									
Cladosporium	6	240	60	1	40	20		a state and the state of the st	
Curvularia						20			
Epicoccum									
Cercospora									100000000000000000000000000000000000000
Fusarium				P. 19 19 19 19 19					
Memnoniella		1							
Nigrospora								CONTRACTOR OF STREET	
Penicillium/Aspergillus	4	160	40	1	40	20			
Polythrincium									
Rusts									
Smuts/Periconia/Myxomy									
Spegazzinia									
Stachybotrys									
Stemphylium									
Tetraploa									a charles
Torula									er og en
Jlocladium									
Colorless/Other Brown*									
Didium									
Zygomycetes								PROFESSION DESIGNATION OF THE PROFESSION	
Pithomyces									
Background debris (1-5)**	3			3					The second
Sample Volume(liters)	25			25					
TOTAL SPORES/M ³	10	400		5	200		in a second		1

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Texas Lic: LAB1016

Form 18.0 Rev 09 07/30/20

5	Phoenix EnviroCorp
11	4000 SHEPKARD BLVD

CHAIN OF CUSTODY

TACT:	Shaenaz Mirr	nonameu	RUS # . 210 TELEPHONE (910) 397-0	570 TAX (510) 515 0	0.51	Sample date:	5/3/2021	_	
	21-21-14681		SITE ADDRESS:		e, Wilmington, N	C 28405		_	⊢
MPLE TYPE: Spor	RESULTS TO re Trap - Mic urface Sample	ro-5	PHOENIXENVIROCORP.C NUMBER OF SAMPLES: 2	TURN AROUND	D TIME SPECIFIE	D: 48 hrX S	tandard		
Sampl	le #		Samı Are		Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperat "F	re
050321-9	5M-301		Outside - Front - 1s	Plant all	25L	S001	66.5	78.	
050321-5	SM-302		Outside - Front - 2n	d floor	25L	S001			\vdash
_		-							
				_	_	_			-
	-				50.	noles	aa	FA	5
					stu	Span		9	
-	4	-			-			-	_
	-		_	_					-
				_	_				_
		1			_				-
									-
amples Colle	cted By (Prin	ted Name and	d Signature):	- Jemehand		Date Signed:	5/3/202	1	
			CHAIN C	OF CUSTODY R	ECORD				
DATE:	Time:	Condition of Samples:	(Printed Name	ISHED BY: and Signature)			PTED BY: e and Signatu	ire)	
5/3/2021	15:00	Intact	0	- Jemehaned	AFFILIATIO		0		
		<u></u>	AFFILIATION:		INFELIATIO	(7	- 2	5-41	-

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 05/04/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

		Date Sampled:	05/03/21
Attn: Phoenix En	viro Corp.	Date Received:	05/04/21
4020 Shipyard B	lvd.	Date Analyzed:	05/04/21
Wilmington, NC	28403	Date Reported:	05/04/21
		Date Revised:	
		Project Name:	21-21-146&147-IAQ-M
		Project Address:	302 Grass Lane
		Project City, State, ZIP:	Wilmington, NC 28405
		SEEML Reference # :	210504007
TEST METHOD: DIRECT I	MICROSCOPY EXAMINATION SE	EML SOP 7	
Client Sample ID	050321-SM-301	050321-SM-302	

Client Sample ID	050321-SM-301		050321-SM-302						
Location	Outsi	de - Front - 1s	t Floor	Outside - Front - 2nd Floor					
Lab Sample ID	210504007-019			210504007-020					
Comments									
Hyphal Fragments									
Pollen				5	200	•			-
Spore Trap Used		M5			M5			4	
· · ·	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%			
Alternaria						,,,			
Ascospores	5	200	25	3	120	14			
Basidiospores	2	80	10	2	80	9			
Bipolaris/Drechslera	_			_					
Chaetomium									
Cladosporium	10	400	50	12	480	55			
Curvularia									
Epicoccum									
Cercospora									
Fusarium									
Memnoniella									
Nigrospora									
Penicillium/Aspergillus	1	40	5						
Polythrincium									
Rusts				1	40	5			
Smuts/Periconia/Myxomy				4	160	18			
Spegazzinia						-			
Stachybotrys									
Stemphylium		1							
Tetraploa									
Torula		1							
Ulocladium									
Colorless/Other Brown*									
Oidium	2	80	10						
Zygomycetes									
Pithomyces									
Background debris (1-5)**	3			3					
Sample Volume(liters)	25			25					
TOTAL SPORES/M ³	20	800		22	880				
Revisions:							•		•

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin
Acremonium crotocinigenum	Crotocin
Aspergillus favus	Alfatoxin B, cyclopiazonic acid
Aspergillus fumigatus	Fumagilin, gliotoxin
Aspergillus carneus	Critrinin
Aspergillus clavatus	Cytochalasin, patulin
Aspergillus Parasiticus	Alfatoxin B
Aspergillus nomius	Alfatoxin B
Aspergillus niger	Ochratoxin A, malformin, oxalicacid
Acremonium crotocinigenum	Crotocin
Aspergillus nidulans	Sterigmatocystin
Aspergillus ochraceus	Ochratoxin A, penicillic acid
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin
	Ausdiol, austamide,
Aspergillus ustus	austocystin, brevianamide
Aspergillus terreus	Citreoviridin
	Alternariol, altertoxin, altenuene, altenusin,
Alternaria	tenuazonic acid
Arthrinium	Nitropropionic acid
	Cytochalasin, sporidesmin,
Bioploaris	sterigmatocystin
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin
Cladosporium	Cladosporic acid
Clavipes purpurea	Ergotism
Cylindrocorpon	Trichothecene
Diplodia	Diplodiatoxin
Fusarium	Trichothecene, zearalenone
Fusarium moniliforme	Fumonisins
Emericella nidulans	Sterigmatocystin
Gliocladium	Gliotoxin
	Griseofulvin, dechlorogriseofulvin, epi-
Memnoniella	decholorgriseofulvin, trichodermin,
	trichodermol
Myrothecium	Trichothecene
Paecilomyces	Patulin, viriditoxin
Penicillium aurantiocandidum	Penicillic acid
Penicillium aurantiogriseum	Penicillic acid
Penicillium brasilanum	Penicillic acid
Penicillium brevicompactum	Mycophenolic acid
Penicillium camemberti	Cyclopiazonic acid
Penicillium carneum	Mycophenolic acid, Roquefortine C
Penicillium crateriforme	Rubratoxin

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	June 16, 2021
For:	Quanesha Mullins Wilmington Housing Authority 1524 S. 16 th Street Wilmington, NC 28401
Remediation Contractor:	Not determined

On-Site Consultant:

Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Shoemory V firmchamed

Shaenaz Mirmohamed IH Technician

Tomm hu

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECT	FION 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	5
1.5	Cleanup Overview	6
1.6	Post Remediation Verification Testing	6
SECT	FION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	6
2.2	Project Description	7
SECT	FION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	7
3.2	Personal Monitoring	7
3.3	Sample Integrity and Reporting	8
SECT	FION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	8
SECT	FION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	8
SECT	FION 6.0 WASTE CONTROL	
6.1	Waste Disposal	8
SECT	TION 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	8
7.2	Definitions	9
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 **Project Set Up**

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

PEC Job #: 21-21-146A-IAQ-M

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow.
- Once the HVAC system is shut down, the system shall remain off and isolated until acceptable post remediation results are obtained.

Note: For directional purposes "front" is determined by facing Grass Lane from inside the residence, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation. All non-stable furnishings and contents shall be removed from the containment area/primary control area prior to specified remediation to avoid cross contamination of furnishings and contents. If elected, said furnishings and contents can be precleaned (i.e., HEPA vacuum, etc.) and stored in the primary control area, but shall be protected (i.e., covered with poly, etc.) to avoid cross contamination.

Within the bathroom:

- Detach the floor mounted cabinet from the front wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.
- Remove baseboards entirely from the front, rear, and right walls, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.
- Remove any loose floor tiles.
- Clean all remaining surfaces within the control area as specified herein under general specifications for primary control areas.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not recontaminated (i.e. working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% + /-3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 25 hours (the equivalent of 100 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

PEC Job #: 21-21-146A-IAQ-M

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp investigative report dated May 5, 2021, and June 16, 2021.

Phoenix EnviroCorp Chain of Custody dated May 3, 2021, and June 7, 2021.

Analytical reports dated May 4, 2021, and June 8, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future exposures will not occur.

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

PEC Job #: 21-21-146A-IAQ-M

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Analytical Method
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e. broken-pipe-line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled

PEC Job #: 21-21-146A-IAQ-M

in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134 29 CFR 1910.145 29 CFR 1926.28 29 CFR 1926.59 29 CFR 1926.96 29 CFR 1926.100 29 CFR 1926.101 29 CFR 1926.102 29 CFR 1926.403 29 CFR 1926.416	Respiratory Protection Specifications for Accident Prevention, Signs and Tags Personal Protective Equipment Hazard Communication Occupational Foot Protection Head Protection Hearing Protection Eye and Face Protection Electrical General Requirements
29 CFR 1926.101 29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.416 29 CFR 1926.852 29 CFR 1926.1091	Safety General Requirements Demolition, Chutes Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2 nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

PEC Job #: 21-21-146A-IAQ-M

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory

Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

302 Grass Lane, Unit 210 Wilmington, NC 28401 Page 1 of 2

April 15, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-114-IAQ-M; 302 Grass Lane, Unit 210, Wilmington, NC – Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on April 13, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling and to collect surface samples of suspect visible mold growth.

Background Information: The tenant reported mold growth on the HVAC supply vents.

The HVAC system was operating in the cool mode, set at 68° F upon PEC's arrival and during sampling.

Note: For directional purposes, "front" is determined by facing Grass Lane from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

• Suspect visible mold growth on several HVAC supply vents

Mold Testing – Surface: A non-viable surface sample was collected from an area of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

Location	<u>Result</u>
Living room HVAC supply vent	M – FG Cladosporium
	L – FG Penicillium/Aspergillus
	L – FG Ulocladium

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen/living room, the rear right bedroom, the rear left bedroom, and the bathroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized*

locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.

Results indicated acceptable levels of airborne mold spores in all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the residence ranged from 47.1% - 51.6% with an outdoor RH level of 49.3% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%.

Conclusions: Air sampling within the tested areas did not indicate a problem with the indoor air quality regarding mold; however, surface mold growth (*Cladosporium, Penicillium/Aspergillus, and Ulocladium*) was identified on the living room HVAC supply vent.

PEC recommends cleaning the identified mold growth and any like areas with an over-the-counter product designed specifically for cleaning mold growth. Such a product can be purchased at most hardware stores, and the manufacturer's instructions shall be followed.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Shoemong Minchamed

Shaenaz Mirmohamed IH Technician

Tomm tur

Tommie Green, CIEC Professional Industrial Hygienist

Enclosures

Photo 1

Suspect visible mold growth on the living room HVAC supply vent

Photo 2

Suspect visible mold growth on the kitchen HVAC supply vent

Samples allerkd

Phoenix EnviroCorp

CHAIN OF CUSTODY

LABORATORY TEST REQUEST

WILMINGTON, NC 28403	See MI Nef并到04140210 196 I	0:060-064
CONTACT: Shaenaz Mirmohame		3-6094 Sample date: 4/13, 20
PEC Job #: 21-21-114-IAQ-M	and a second	ane, Unit 210, Wilmington, NC 28401
PLEASE EMAIL RESULTS TO: KMG SAMPLE TYPE: Spore Trap - Micro-5 Surface Samples	REEN@PHOENIXENVIROCORP.COM NUMBER OF SAMPLES: 4 Immec 1	IND TIME SPECIFIED: diate 24 hr 48 hrX Standard
Sample #	Sample Area	Sample Lab Analysis % Rela iv Volume Requested Humic ty
041321-SM-01	Kitchen/living room	25L S001 47.
041321-SM-02	Rear right bedoom	25L S001 48.
041321-SM-03	Rear left bedroom	25L S001 47.
041321-SM-04	Bathroom	25L S001 51.
041321-SM-05	Living room HVAC supply vent	1 cm sq S001T NA
Samples Collected By (Printed Na	ame and Signature): Decours Mindesmud	Date Signed: 4/13/2
<u> </u>	CHAIN OF CUSTODY	RECORD

 DATE:
 Time:
 Condition of Samples:
 RELINQUISHED BY: (Printed Name and Signature)
 ACCEPTED BY: (Printed Name and Signature)

 4/13/2021
 14:00
 Totact
 Stomes fundamed
 Muse 4/-1/

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for Phoenix Enviro Corp. has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

<u>Angel Gosnell</u>

Date: 04/14/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			Spore	Trap Re	port Data (Sampled:	04/13/21		
						Received:		and a second	
Attn: Phoenix Envir									
4020 Shipyard Blve					Date A	Analyzed:	04/14/21		
Wilmington, NC 28	3403					Reported:			
						Revised:			
					Proje	ct Name:	21-21-114-	IAQ-IVI	
					Project	Address:	302 Grass	Lane, Unit 210	
					Project City, S	tate, ZIP.	210414020	, NC 20401	
					SEEML Refe	rence # .	210414020		
EST METHOD: DIRECT M			ATION SE	EML SOP	1		r ,	041321-SM-03	
Client Sample ID	C	41321-SM-01		0	41321-SM-02			J41321-3IVI-03	
ocation	Kitc	hen / Living Roo	om	Re	ar Right bedroo	m	R	ear Left Bedroom	ı
					10414020-06	1		10414020-062	
_ab Sample ID	2	10414020-060)	<u> </u>	10414020-00	1			
Comments		1			1 100				
Hyphal Fragments					<u> </u>				
Pollen		N45			M5			M5	
Spore Trap Used		M5	0/			%	raw ct.	spores/m ³	%
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	70	Taw CL.	5000000	70
Alternaria					1 240	19	7	280	11
Ascospores	6	240	11	6	240	38	11	440	18
Basidiospores	21	840	40	12	480	30	11	440	10
Bipolaris/Drechslera			le transie		++		+		
Chaetomium					+ 100 +	04	31	1240	50
Cladosporium	25	1000	47	10	400	31	31	1240	50
Curvularia					++				
Epicoccum									
Cercospora									
Fusarium				A CARE AND A	++				
Memnoniella									
Nigrospora					1 100	40	10	480	19
Penicillium/Aspergillus	1	40	2	4	160	13	12	400	13
Polythrincium				- And the second second					
Rusts									
Smuts/Periconia/Myxomy			1.						
Spegazzinia									
Stachybotrys									
Stemphylium							_		
Tetraploa									
Torula									
Ulocladium									
Colorless/Other Brown*								40	2
Oidium							1	40	- 2
Zygomycetes									
Pithomyces							-	- Contraction of the second second	1
Background debris (1-5)**	3			3			3		
Sample Volume(liters)	25			25		100	25	-	1
TOTAL SPORES/M ³	53	2120		32	1280		62	2480	

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell

Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20

Texas Lic: LAB1016 Page 2 of 14

re Tran Report

			Spore Tra	p Report				
				Da	te Sampled:	04/13/21		
Attn: Phoenix Envi	ro Corp.				e Received:			
	4020 Shipyard Blvd.				te Analyzed:			
Wilmington, NC 28					te Reported:	04/14/21		
				Da	ate Revised:			
				Pr	roject Name:	21-21-114-	IAQ-M	
				Proj	ect Address:	302 Grass	Lane, Unit 210	
				Project City	, State, ZIP:	Wilmingtor	n, NC 28401	
					leference # :	210414020)	
EST METHOD: DIRECT M	ICROSCO	DPY EXAMINA	TION SEEML	SOP 7				
Client Sample ID	C	41321-SM-04						
		Bathroom						
ocation								
ab Sample ID	2	10414020-063	3					
Comments							1	
Hyphal Fragments					-			
Pollen	2	80						
Spore Trap Used		M5			1		1	l
	raw ct.	spores/m ³	%					
Alternaria								
Ascospores	2	80	5					
Basidiospores	9	360	22					
Bipolaris/Drechslera								
Chaetomium								
Cladosporium	24	960	59					
Curvularia								
Epicoccum								
Cercospora								
Fusarium								
Memnoniella								
Nigrospora								
Penicillium/Aspergillus	6	240	15					
Polythrincium							-	
Rusts								
Smuts/Periconia/Myxomy								
Spegazzinia								
Stachybotrys								
Stemphylium								
Tetraploa								+
Torula								
Ulocladium								
Colorless/Other Brown*					_			1
Oidium						-		
Zygomycetes								
Pithomyces						1		
Background debris (1-5)**	3	Margaret M						
Sample Volume(liters)	25							1
TOTAL SPORES/M ³	41	1640						

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell

Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20

Texas Lic: LAB1016 Page 3 of 14

Surface and Bulk Sample Report

	Surf	ace and Bulk Sample Report	
		Date Sampled:	04/13/21
Attn: Phoenix Er	nviro Corp.	Date Received:	04/14/21
4020 Shipyard E		Date Analyzed:	04/14/21
Wilmington, NC		Date Reported:	04/14/21
		Date Revised:	
		Project Name:	21-21-114-IAQ-M
	1	Project Address:	302 Grass Lane, Unit 210
		Project City, State ZIP:	Wilmington, NC 28401
		SEEML Reference #:	
EST METHOD: Direct Micros	scopic Examination (SE	EML SOP 18)	
Client Sample ID	041321-SM-05		
	Living Room HVAC Supply Vent		
SEEML Sample ID	210414020-064		
Sample Type	Таре		
	Quantification*		
Hyphal Fragments	M		
Pollen			
General Impressions **	FG		
Fungal Spore:			
Alternaria			
Acremonium			
Ascospores			
Basidiospores			
Bipolaris/Drechslera			
Cercospora			
Chaetomium			
Cladosporium	M		
Curvularia			
Epicoccum			
Fusarium			
Geotrichum sp.			
Memnoniella			1 A.
Myxomycetes			
Nigrospora			
Penicillium/Aspergillus	L		
Pithomyces			
Rusts/Smuts			
Stemphylium			
Tetraploa			
Ulocladium	L		

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589 AIHA-LAP, LLC EMLAP # 173667 Texas License: LAB1016

Form 46.0 Rev 6 01793 ge 4 of 14

Phoenix EnviroCorp 4020 SHIPVARD BLVD. WILMINGTON, NC 28403	Seeme NS#210414018		T FD:05		
CONTACT: Shaenaz Mirmoha	med TELEPHONE (910) 397-0370 FAX (910) 313	-6094	Sample date:	4/13/2021	6
PEC Job #: 21-21-113, 114, &1	116-IAQ-M SITE ADDRESS: 302 Grass L	ane, Units 210, 21	1, & 108, Wilmir	ngton, NC 284)1
PLEASE EMAIL RESULTS TO: KI SAMPLE TYPE: Spore Trap - Micro-5 Surface Samples		ND TIME SPECIFI		Standard	
Sample #	Sample Area	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperatu *F
041321-SM-301	Outside - Front - 2nd floor	25L	S001	49.3	70.5
041321-SM-302	Outside - Front - 1st floor	25L	S001		
		d all the second			
	e)				
		_			
		-			1 1 1
					+

CHAIN OF CUSTODY RECORD

ACCEPTED BY: (Printed Name and Signature) RELINQUISHED BY: (Printed Name and Signature) Condition of DATE: Time: Samples: Shooning M e. ed 4/13/2021 14:00 4-14-21 JN Intact AFFILIATION: AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 04/14/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

							: 04/13/21		
Attn: Phoenix E	nviro Corp.			Date Received: 04/14/21					
4020 Shipyard	4020 Shipyard Blvd.				Date	Analyzed	: 04/14/21		
Wilmington, NO	Wilmington, NC 28403				Date	Reported	: 04/14/21		
					Dat	e Revised	:		
					Pro	ject Name	: 21-21-113	3, 114, & 116-I	AQ-M
					Projec	t Address	: 302 Grass L	ane, Units 210,21	1, & 108
					Project City,	State, ZIP	: Wilmingto	on, NC 28401	
					SEEML Ret	ference #	: 21041401	8	
TEST METHOD: DIRECT	MICROSCO	OPY EXAMIN	NATION SE	EML SOP	7				
Client Sample ID	0	41321-SM-3	01	0	41321-SM-30)2			
Location	Outsid	de - Front - 2n	d Floor	Outside - Front - 1st Floor					
Lab Sample ID	2	10414018-0	51	2	10414018-05	52			
Comments									
Hyphal Fragments	4	160							
Pollen	29	1160							
Spore Trap Used		M5		M5					
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%			
Alternaria									
Ascospores	122	4880	31	10	400	17			

19

30

1

760

1200

40

32

50

2

TOTAL SPORES/M ³	390	15600	60	2400			
Revisions:							
Spore types listed without a count o	r data entry wer	e not detected du	iring the course of the analysi	s for the respectiv	ve sample, indicating a	raw count of <1 spore.	
The analytical sensitivity is the spor	es/m ³ divided b	y the raw count, e	expressed in spores/m ³ . The I	imit of detection is	s the analytical sensitiv	/ity (in spores/m ³) multip	lied by the
sample volume (in liters) divided by	1000 liters.						

3

25

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

142

125

1

3

25

5680

5000

40

36

32

<1

Augel Gosnell Angel Gosnell, Approved Laboratory Signatory

Basidiospores

Chaetomium

Cladosporium Curvularia Epicoccum Cercospora Fusarium Memnoniella Nigrospora

Polythrincium

Spegazzinia Stachybotrys Stemphylium Tetraploa Torula Ulocladium

Rusts

Oidium Zygomycetes Pithomyces

Bipolaris/Drechslera

Penicillium/Aspergillus

Smuts/Periconia/Myxomy

Colorless/Other Brown*

Background debris (1-5)**

Sample Volume(liters)

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin
Acremonium crotocinigenum	Crotocin
Aspergillus favus	Alfatoxin B, cyclopiazonic acid
Aspergillus fumigatus	Fumagilin, gliotoxin
Aspergillus carneus	Critrinin
Aspergillus clavatus	Cytochalasin, patulin
Aspergillus Parasiticus	Alfatoxin B
Aspergillus nomius	Alfatoxin B
Aspergillus niger	Ochratoxin A, malformin, oxalicacid
Acremonium crotocinigenum	Crotocin
Aspergillus nidulans	Sterigmatocystin
Aspergillus ochraceus	Ochratoxin A, penicillic acid
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin
	Ausdiol, austamide,
Aspergillus ustus	austocystin, brevianamide
Aspergillus terreus	Citreoviridin
	Alternariol, altertoxin, altenuene, altenusin,
Alternaria	tenuazonic acid
Arthrinium	Nitropropionic acid
	Cytochalasin, sporidesmin,
Bioploaris	sterigmatocystin
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin
Cladosporium	Cladosporic acid
Clavipes purpurea	Ergotism
Cylindrocorpon	Trichothecene
Diplodia	Diplodiatoxin
Fusarium	Trichothecene, zearalenone
Fusarium moniliforme	Fumonisins
Emericella nidulans	Sterigmatocystin
Gliocladium	Gliotoxin
	Griseofulvin, dechlorogriseofulvin, epi-
Memnoniella	decholorgriseofulvin, trichodermin,
	trichodermol
Myrothecium	Trichothecene
Paecilomyces	Patulin, viriditoxin
Penicillium aurantiocandidum	Penicillic acid
Penicillium aurantiogriseum	Penicillic acid
Penicillium brasilanum	Penicillic acid
Penicillium brevicompactum	Mycophenolic acid
Penicillium camemberti	Cyclopiazonic acid
Penicillium carneum	Mycophenolic acid, Roquefortine C
Penicillium crateriforme	Rubratoxin

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	June 9, 2021
For:	Quanesha Mullins Wilmington Housing Authority 1524 S. 16 th Street Wilmington, NC 28401

Remediation Contractor:

On-Site Consultant:

Not determined

Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Shoemory V firmchamed

Shaenaz Mirmohamed IH Technician

Tomm hu

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECT	FION 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	6
1.6	Post Remediation Verification Testing	7
SECT	FION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	7
SECT	FION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SECT	FION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	9
SECT	FION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SECT	FION 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SECI	FION 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	10
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

PEC Job #: 21-21-114B-IAQ-M

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow. Prior to isolating the vents, the register covers (diffusers) shall be removed and the supply shall be isolated at the metal boot. Once isolated, the registers and surrounding building materials shall be cleaned.
- The interior of the air handler and rigid duct system shall be thoroughly cleaned by an HVAC professional experienced in mold remediation. The interior can be cleaned with mechanical methods that aggressively disturb all interior surfaces and filter the disturbed airborne particulates.

PEC Job #: 21-21-114B-IAQ-M

- Cleaning of components shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris.
- PEC recommends the removal and disposal of the flex ducts when feasible, as well as any interior duct board where cleaning will damage the duct board. Once removed, the remediation contractor shall isolate the connection point where the flex duct and/or duct board was detached with a critical barrier (such as plastic, etc.) to prevent air flow.
- Once the HVAC system components are cleaned or replaced anew, the system shall remain off and isolated until acceptable post remediation results are obtained.
- A written document shall be obtained from the remediation contractor verifying that the HVAC system has been cleaned by an HVAC cleaning company with mold experience. This document shall include the property address and date of services and shall be filed with other mold remediation documents.

Note: For directional purposes "front" is determined by facing Grass Lane from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation.

Within the rear bedroom closet:

• Remove the baseboards entirely from the front and right walls, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.

Within the bathroom:

• Detach and dispose of the floor mounted cabinet from the front wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.

Within the kitchen:

• Detach the floor mounted cabinet from the left wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.

Within the laundry area:

• Due to the reported washing machine leak; remove the baseboards entirely from the front, rear, and left walls to assess the exposed drywall and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.

Within the kitchen/living room, the rear left bedroom closet, the laundry area and the bathroom (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

• Clean all surfaces as specified herein under general specifications for primary control areas.

General Specifications for Primary Control Areas

• Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.

PEC Job #: 21-21-114B-IAQ-M

- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- In areas where drywall removal is specified around windows and doors, remove trim boards. The door casing(s) shall also be assessed to determine if they have sustained mold/water damage. If so, they shall be cleaned, or removed.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not recontaminated (i.e. working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% + /-3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post Page 6 of 13

PEC Job #: 21-21-114B-IAQ-M

remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp initial investigative report dated April 15, 2021.

Phoenix EnviroCorp investigative report dated May 12, 2021, and June 9, 2021.

Phoenix EnviroCorp Chain of Custody dated April 13, 2021, and May 7, 2021

Analytical reports dated April 14, 2021, and May 10, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface Page 7 of 13

PEC Job #: 21-21-114B-IAQ-M

contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future exposures will not occur.

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Analytical Method
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e. broken-pipe-line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment

29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2 nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential Buildings
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring

Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

PEC Job #: 21-21-114B-IAQ-M

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove				
Sodium Hypochlorite	Neoprene or Nitrile				
Phenolic Compounds	Neoprene				
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)				
Detergents	Latex				

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

302 Grass Lane, Unit 211 Wilmington, NC 28401 Page 1 of 2

April 14, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-116-IAQ-M; 302 Grass Lane, Unit 211, Wilmington, NC – Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on April 13, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling to determine airborne mold spore levels and to collect surface samples of suspect visible mold growth.

Background Information: The tenant reported that they have not seen mold in their unit, but there was mold in the unit beneath them.

The HVAC system was operating in the cool mode, set at 76° F upon PEC's arrival and during sampling.

Note: For directional purposes, "front" is determined by facing Grass Lane from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following:

• No suspect visible mold growth observed

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen/living room, the rear right bedroom, the rear left bedroom, and the bathroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.*

Results indicated acceptable levels of airborne mold spores in all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/

Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the unit ranged from 53.9% - 59.1% with an outdoor RH level of 49.3% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%. Consistent RH levels above 60% are conducive to mold growth.

Conclusions: Air sampling within the tested areas did not indicate a problem with the indoor air quality regarding mold, and there was no suspect visible mold growth observed.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Shoemory Minchamed

Shaenaz Mirmohamed IH Technician

Enclosures

Jour An

Tommie Green, CIEC Professional Industrial Hygienist

Samples allephd

CHAIN OF CUSTODY

LABORATORY TEST REQUEST

Pho	oenix		CHAIN OF CUSTODY								
Envi	AVITOCOTP	LABORATORY TEST REQUEST									
4020 SHIPT WILMINGTO	ARD BLVD, IN, NC 28403	5	Seemi Nor# 210414021 INB ID: 065-068								
ONTACT: S	ihaenaz Mirm		TELEPHONE (910) 397-0370 FAX (910) 313-6094 Sample date: 4/13/2021								
EC Job #: 2	1 21 116 14	0-M	SITE ADDRESS:	302 Grass Lane, J	Unit 211. Wiln	it 211, Wilmington, NC 28401					
			PHOENIXENVIROCORP.C	OM							
AMPLE TYPE:			NUMBER OF SAMPLES:	ITURN AROUND I	IME SPECIFIE	D: 48 hrX S	tandard				
and prover the state of the state and	e Trap - Micro rface Sample		4	Immediate _	24 nr	40 1113					
Su	nace sample	5	0		Sample	Lab Analysis	% Relative	Temperature			
Sample #		Samp Area	Volume	Requested	Humidity	F					
041321-S	M-101		Kitchen/living roo	om	25L	S001	59.1	75.4			
041321-S	M-102		Rear right bedoo	om	25L	S001	54.3	74.6			
041321-S	M-103		Rear left bedroo	im	25L	S001	54,4	74.6			
041321-S	M-104		Bathroom			S001	53.9	74.6			
				•							
and the second second second	1. 1000 (C) (C)										
_											
			Showers	og Minichamed		Date Signed	: 4/13/202	1			
Samples Colle	cted By (Prin	ited Name and		OF CUSTODY RE	CORD						
	Time	Condition o	f RELINQ	UISHED BY:	1	ACC	EPTED BY:	(170)			
DATE: 4/13/2021	Time: 14:00	Samples:	(Printed Nam	e and Signature)	(Printed Name and Signature)						
7/15/2021	14.00	Intact	0	/		OK	4-14-2	1			

AFFILIATION:

AFFILIATION:

SEEML Reference Number: 210414021

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

<u>Angel Gosnell</u>

Date: 04/14/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

Date Sampled: 04/13/21
Date Received: 04/14/21
Date Analyzed: 04/14/21
Date Reported: 04/14/21
Date Revised:
Project Name: 21-21-116-IAQ-M
Project Address: 302 Grass Lane, Unit 211
ject City, State, ZIP: Wilmington, NC 28401
EEML Reference # : 210414021

DIDECT MICDOSCODY EXAMINATION SEEMI SOP

Client Sample ID		41321-SM-101		04	EEML SOP 7 041321-SM-102			41321-SM-103	
ocation	Kitchen / Living Room 210414021-065			Rear Right Bedroom			Rear Left Bedroom		
Lab Sample ID				21	210414021-066			210414021-067	
Comments			_						
Hyphal Fragments	1	40							
Pollen									
Spore Trap Used		M5			M5		M5		
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%
Alternaria									
Ascospores									
Basidiospores	2	80	25	-					
Bipolaris/Drechslera									
Chaetomium									
Cladosporium	1	40	13	None			1	40	33
Curvularia				Detected					
Epicoccum									
Cercospora									
Fusarium									
Memnoniella									
Nigrospora									
Penicillium/Aspergillus	5	200	63				2	80	67
Polythrincium									
Rusts									
Smuts/Periconia/Myxomy									-
Spegazzinia									
Stachybotrys									
Stemphylium									
Tetraploa									
Torula									
Ulocladium									
Colorless/Other Brown*									
Oidium									
Zygomycetes									
Pithomyces									L
Background debris (1-5)**	3			4			3		
Sample Volume(liters)	25			25			25		-
TOTAL SPORES/M ³	8	320		0			3	120	

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Angel Gosnell

Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20

Texas Lic: LAB1016

Page 2 of 13

Spore Trap Report

	Date Sampled: 04/13/21
Attn: Phoenix Enviro Corp.	Date Received: 04/14/21
4020 Shipyard Blvd.	Date Analyzed: 04/14/21
Wilmington, NC 28403	Date Reported: 04/14/21
Winnington, No 20100	Date Revised:
	Project Name: 21-21-116-IAQ-M
	Project Address: 302 Grass Lane, Unit 211
	Project City, State, ZIP: Wilmington, NC 28401
	SEEML Reference #: 210414021

DIRECT MICROSCORY EXAMINATION SEEMI SOP 7

Client Sample ID	04	41321-SM-104			 	
ocation		Bathroom				
ab Sample ID	2	10414021-068				
Comments						
Hyphal Fragments						
Pollen						
Spore Trap Used		M5			 	
	raw ct.	spores/m ³	%			
Alternaria						
Ascospores						
Basidiospores	5	200	36			
Bipolaris/Drechslera						
Chaetomium					 	
Cladosporium	5	200	36			
Curvularia					 	
Epicoccum						
Cercospora						
Fusarium						
Memnoniella						
Nigrospora						
Penicillium/Aspergillus	4	160	29		 	
Polythrincium						
Rusts						
Smuts/Periconia/Myxomy						
Spegazzinia						
Stachybotrys						
Stemphylium						
Tetraploa						
Torula						
Ulocladium					and the second	
Colorless/Other Brown*					 	
Oidium						
Zygomycetes					 	
Pithomyces					Contraction of the local distance of the loc	
Background debris (1-5)**	3					
Sample Volume(liters)	25			140		i de la protectiva de la
TOTAL SPORES/M ³	14	560				

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Texas Lic: LAB1016

Page 3 of 13

Form 18.0 Rev 09 07/30/20

Phoenix EnviroCorp 4020 SHIPVARD BLVD. WILMINGTON, NC 28403	Seeme NS#210414018		T FD:05		
CONTACT: Shaenaz Mirmoha	med TELEPHONE (910) 397-0370 FAX (910) 313	-6094	Sample date:	4/13/2021	6
PEC Job #: 21-21-113, 114, &1	116-IAQ-M SITE ADDRESS: 302 Grass L	ane, Units 210, 21	1, & 108, Wilmir	ngton, NC 284)1
PLEASE EMAIL RESULTS TO: KI SAMPLE TYPE: Spore Trap - Micro-5 Surface Samples		ND TIME SPECIFI		Standard	
Sample #	Sample Area	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperatu *F
041321-SM-301	Outside - Front - 2nd floor	25L	S001	49.3	70.5
041321-SM-302	Outside - Front - 1st floor	25L	S001		
		d all the second			
	e)				
		_			
		-			1 1 1
					+

CHAIN OF CUSTODY RECORD

ACCEPTED BY: (Printed Name and Signature) RELINQUISHED BY: (Printed Name and Signature) Condition of DATE: Time: Samples: Shooning M e. ed 4/13/2021 14:00 4-14-21 JN Intact AFFILIATION: AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 04/14/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

							: 04/13/21		
Attn: Phoenix Enviro Corp.					Date	Received	: 04/14/21		
4020 Shipyard	Blvd.				Date	Analyzed	: 04/14/21		
Wilmington, NO	C 28403				Date	Reported	: 04/14/21		
					Dat	e Revised	:		
					Pro	ject Name	: 21-21-113	3, 114, & 116-I	AQ-M
					Projec	t Address	: 302 Grass L	ane, Units 210,21	1, & 108
					Project City,	State, ZIP	: Wilmingto	on, NC 28401	
					SEEML Ret	ference #	: 21041401	8	
TEST METHOD: DIRECT	MICROSCO	OPY EXAMIN	NATION SE	EML SOP	7				
Client Sample ID	0	041321-SM-301		041321-SM-302					
Location	Outsid	de - Front - 2n	d Floor	Outside - Front - 1st Floor					
Lab Sample ID	2	10414018-0	51	210414018-052					
Comments									
Hyphal Fragments	4	160							
Pollen	29	1160							
Spore Trap Used		M5			M5				
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%			
Alternaria									
Ascospores	122	4880	31	10	400	17			

19

30

1

760

1200

40

32

50

2

TOTAL SPORES/M ³	390	15600	60	2400			
Revisions:							
Spore types listed without a count o	r data entry wer	e not detected du	iring the course of the analysi	s for the respectiv	ve sample, indicating a	raw count of <1 spore.	
The analytical sensitivity is the spor	es/m ³ divided b	y the raw count, e	expressed in spores/m ³ . The I	imit of detection is	s the analytical sensitiv	/ity (in spores/m ³) multip	lied by the
sample volume (in liters) divided by	1000 liters.						

3

25

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

142

125

1

3

25

5680

5000

40

36

32

<1

Augel Gosnell Angel Gosnell, Approved Laboratory Signatory

Basidiospores

Chaetomium

Cladosporium Curvularia Epicoccum Cercospora Fusarium Memnoniella Nigrospora

Polythrincium

Spegazzinia Stachybotrys Stemphylium Tetraploa Torula Ulocladium

Rusts

Oidium Zygomycetes Pithomyces

Bipolaris/Drechslera

Penicillium/Aspergillus

Smuts/Periconia/Myxomy

Colorless/Other Brown*

Background debris (1-5)**

Sample Volume(liters)

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin
Acremonium crotocinigenum	Crotocin
Aspergillus favus	Alfatoxin B, cyclopiazonic acid
Aspergillus fumigatus	Fumagilin, gliotoxin
Aspergillus carneus	Critrinin
Aspergillus clavatus	Cytochalasin, patulin
Aspergillus Parasiticus	Alfatoxin B
Aspergillus nomius	Alfatoxin B
Aspergillus niger	Ochratoxin A, malformin, oxalicacid
Acremonium crotocinigenum	Crotocin
Aspergillus nidulans	Sterigmatocystin
Aspergillus ochraceus	Ochratoxin A, penicillic acid
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin
	Ausdiol, austamide,
Aspergillus ustus	austocystin, brevianamide
Aspergillus terreus	Citreoviridin
	Alternariol, altertoxin, altenuene, altenusin,
Alternaria	tenuazonic acid
Arthrinium	Nitropropionic acid
	Cytochalasin, sporidesmin,
Bioploaris	sterigmatocystin
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin
Cladosporium	Cladosporic acid
Clavipes purpurea	Ergotism
Cylindrocorpon	Trichothecene
Diplodia	Diplodiatoxin
Fusarium	Trichothecene, zearalenone
Fusarium moniliforme	Fumonisins
Emericella nidulans	Sterigmatocystin
Gliocladium	Gliotoxin
	Griseofulvin, dechlorogriseofulvin, epi-
Memnoniella	decholorgriseofulvin, trichodermin,
	trichodermol
Myrothecium	Trichothecene
Paecilomyces	Patulin, viriditoxin
Penicillium aurantiocandidum	Penicillic acid
Penicillium aurantiogriseum	Penicillic acid
Penicillium brasilanum	Penicillic acid
Penicillium brevicompactum	Mycophenolic acid
Penicillium camemberti	Cyclopiazonic acid
Penicillium carneum	Mycophenolic acid, Roquefortine C
Penicillium crateriforme	Rubratoxin

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

SITE: 302 Grass Lane, Apartment 211, Wilmington, NC 28401

PEC Job #: 21-21-407A-IAQ-M January 18, 2022

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	January 18, 2022
For:	Quanesha Mullins Wilmington Housing Authority 1524 S. 16 th Street Wilmington, NC 28401
Remediation Contractor:	Not determined
On-Site Consultant:	Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Shoenoz Minchomed Shaenaz Mirmohamed

IH Technician

Tomm her

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECTION 1.0 REMEDIATION PROCEDURES

1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	7
1.6	Post Remediation Verification Testing	7
SECTI	ON 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	8
SECTI	ON 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SECTI	ON 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	9
SECTI	ON 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SECTI	ON 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SECTI	ON 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	10
7.3	Quality Assurance	12
7.4	Materials and Equipment	13

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

SITE: 302 Grass Lane, Apartment 211, Wilmington, NC 28401

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow. Prior to isolating the vents, the register covers (diffusers) shall be removed, and the supply shall be isolated at the metal boot. Once isolated, the registers and surrounding building materials shall be cleaned.
- The interior of the air handler, rigid duct system, intake box, etc. shall be thoroughly cleaned by an HVAC professional experienced in mold remediation. The interior shall be cleaned with mechanical methods that aggressively disturb all interior surfaces and filter the disturbed airborne particulates to avoid cross contamination, or other equivalent methods.
- Cleaning of components shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris.

- PEC recommends the removal and disposal of any fibrous or porous materials (i.e., insulation, etc.) from the interior of the HVAC system, to include but not limited to the air handler and rigid ductwork system. PEC also recommends that an HVAC professional design the re-insulation of the HVAC system without the use of porous interior insulation when possible.
- PEC recommends the removal and disposal of the flex ducts when feasible, as well as any interior duct board where cleaning will damage the duct board. Once removed, the remediation contractor shall isolate the connection point where the flex duct and/or duct board was detached with a critical barrier (such as plastic, etc.) to prevent air flow.
- The remediation contractor shall be responsible for coordinating the cleaning of the HVAC system and other specified remediation to avoid cross contamination.
- Once the HVAC system components are cleaned or replaced anew, the system shall remain off and isolated until acceptable post remediation results are obtained.
- A written document shall be obtained from the remediation contractor verifying that the HVAC system has been cleaned by an HVAC cleaning company with mold experience. This document shall include the property address and date of services and shall be filed with other mold remediation documents.

Note: For directional purposes "front" is determined by facing Grass Lane from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation.

Within the kitchen:

• Detach the floor mounted cabinet from the right wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2- foot radius of the affected area when possible.

Within the rear left bedroom:

• Remove the affected ceiling drywall around the HVAC supply vent (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2- foot radius of the affected area when possible.

Within the bathroom:

- Remove the drywall from the front wall. The heigh of this removal shall be approximately 4 feet beginning at the floor and extending towards the ceiling. The width of this removal shall be approximately 5 feet beginning at the right wall and extending towards the left wall.
- Remove the drywall from the right wall. The height of this removal shall be 4 feet beginning at the floor and extending towards the ceiling. The width of this removal shall be 2.5 feet beginning at the front wall and extending towards the rear wall.

Throughout the Residence (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

- Clean all surfaces as specified herein under general specifications for primary control areas.
- Areas of specified ceiling removal shall be sealed with poly (i.e., critical barrier) after cleaning, but before HEPA air scrubbing after cleaning, to prevent air flow from areas outside the containment area. An access door (i.e., poly flap taped in place, zipper, etc.) shall be installed in the critical barrier for easy access to conduct a visual inspection of the building materials behind the critical barrier.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- In areas where drywall removal is specified around windows and doors, remove trim boards. The door casing(s) shall also be assessed to determine if they have sustained mold/water damage. If so, they shall be cleaned, or removed.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.
- The remediation contractor shall document any drywall/wallboard that requires removal, in addition to the specified amount, prior to removal (i.e., drywall that is specified to be assessed by the remediation contractor, etc.). Documentation shall include photos and specific location at a minimum.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not re-contaminated (i.e., working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be placed in an enclosed container prior to transporting the material through the building and to the waste container, and prior to visual inspection by the CIEC/CIE/IH.

Areas shall be allowed to dry for a period until RH and moisture levels specified below have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter or equivalent), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below $40\% \pm 73\%$ (for all interior areas). The remediation contractor shall verify moisture content of all wooden and cellulosic building components within the impacted areas, as well as RH levels prior to scheduling post remediation.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

Criteria for post remediation air sampling can be viewed in PEC's investigative report(s) listed in Section 2.1 below. This information can be found within the air sampling section of said report(s).

SECTION 2.0 SCOPE OF WORK (Note: Section 2.1 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp initial investigative report dated December 6, 2021.

Phoenix EnviroCorp investigative report dated January 18, 2022.

Phoenix EnviroCorp Chain of Custody dated December 2, 2021.

Analytical reports dated December 3, 2021.

2.2 **Project Description**

The procedures covered by this program/protocol include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by this program/protocol include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials shall be appropriately protected during the removal process to avoid exposure.

This program/protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close as possible to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it may become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no PELs or TLVs for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Post remediation sample results shall be available within seven (7) business days of the completion of collection and will include the following information:

PEC Job #: 21-21-407A-IAQ-M January 18, 2022

- Site Address
- Sample Number
- Location Sampled
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e., brokenpipeline, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste shall be transported to the landfill in such a way to ensure that it does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. This protocol shall be reviewed by the remediation contractor prior to initiation of set-up for the project. Any questions regarding this protocol shall be addressed with the generator or appropriate Phoenix EnviroCorp personnel.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134 Respiratory Protection

Page 9 of 13

SITE: 302 Grass Lane, Apartment 211, Wilmington, NC 28401

PEC Job #: 21-21-407A-IAQ-M January 18, 2022

29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

ter Damage Restoration
gi in Indoor
5
ow-Rise Residential

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of

microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, which may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

The contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134. At a minimum, an N-95 dust mask shall be utilized.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

July 28, 2021

Quanesha Mullins Wilmington Housing Authority 1524 S. 16th Street, Wilmington, NC 28401

RE: PEC Job # 21-21-112A-IAQ-M – 302 Grass Lane, Unit 212, Wilmington, NC - Mold Investigation

Enclosed are the results of the mold investigation conducted at the above referenced unit on July 16, 2021. Phoenix EnviroCorp (PEC) was retained to conduct a mold investigation and provide a mold remediation protocol if needed.

Background Information: PEC conducted a mold investigation on April 12, 2021, identifying surface mold growth (*Cladosporium*) on the bathroom ceiling. The investigative report included recommendations for cleaning. The client has since requested additional investigative activities to include a mold remediation protocol if needed.

This is a two-story building on a slab. The subject unit is on the 2nd floor, is vacant, and without carpet.

The HVAC system was off upon PEC's arrival and during sampling.

Related Documents:

• PEC initial investigation report dated April 14, 2021

Note: For directional purposes "front" is determined by facing Grass Lane from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation):

Bathroom

- Apparent water damage in the cabinet
- Apparent water damage on the front wall baseboard
- Suspect visible mold growth on the walls
- Suspect visible mold growth on the HVAC supply vent

<u>Kitchen</u>

• Apparent water damage and suspect visible mold in the front floor mounted cabinet

Living room

• Suspect visible mold growth on the HVAC supply vent

Mold Testing – Surface: Non-viable surface samples were collected from areas of suspect visible mold growth. The quantifications of fungal growth are reported as scattered spores, 21-100 fungal spores = very light (VL), 101-1,000 fungal spores = light (L), 1,001-10,000 fungal spores = moderate (M), > 10,000 fungal spores = heavy (H). The 'General Impressions' of fungal growth are reported as

no fungal growth (NFG), fungal growth (FG), minimal fungal growth or growth in vicinity (MFG), and no fungal spores detected (ND). *Clear tape was utilized for the collection of surface samples. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis.* Sampling locations and results are as follows:

<u>Location</u> Kitchen front wall cabinet	<u>Result</u> Scattered Spores– Basidiospores
Bathroom HVAC supply vent	M – FG Cladosporium
Bathroom left wall	L – FG Cladosporium

Mold Testing – Air: Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the bathroom, the rear right bedroom, the rear left bedroom, the kitchen/living room, and the front left bedroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.*

Results identified elevated airborne levels of *Penicillium/Aspergillus* within the kitchen/living room and the front left bedroom, and elevated airborne levels of *Cladosporium* within the rear left bedroom.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/ Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Moisture Readings: Moisture readings were collected with either a Delmhorst moisture meter or a Tramex Survey Encounter. Multiple readings were taken to represent areas and materials reported. *Readings are marked with either a D or T to denote which meter was used.* For drywall products, readings should be less than or equal to twelve percent ($\leq 12\%$) by Delmhorst and below fifty percent (50%) by Tramex. For wood products, normal moisture content should be less than fifteen percent (<15%) for both meters.

Moisture content measurements were as follows: <u>Bathroom</u>

- Wood cabinet = $\leq 10\%$ (D)
- Wood baseboards = $\leq 15\%$ (D)
- Ceiling drywall = $\leq 10\%$ (T)
- Drywall walls = < 15% (T)

<u>Kitchen</u>

• Wood cabinets = $\leq 10\%$ (D)

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the unit ranged from 49.5% – 52.1% with an outdoor reading of 74.2% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%.

Conclusions: Sample results identified elevated airborne mold spore levels of *Penicillium/Aspergillus* within the kitchen/living room and the front left bedroom, and elevated airborne mold spore levels of *Cladosporium* within the rear left bedroom, in addition to potentially problematic airborne mold spore levels of *Penicillium/Aspergillus* within all other sampled locations based on outdoor levels and the levels/percentages identified indoors. Surface mold growth (*Cladosporium*) was also identified within the bathroom; and apparent water damage was observed on building materials within the unit. A mold remediation protocol that outlines remediation activities is attached.

Prior to commencement of mold remediation, the source of any water intrusions, leaks, and/or moisture/humidity issues shall be remedied. If water intrusions/moisture issues exist and are not remedied, mold can be expected to return.

After remediation activities are completed, but before put-back of removed components, post remediation verification shall be conducted. Upon notice, and for an additional fee, PEC can conduct post remediation verification testing.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Shoemong Vimchamed

Shaenaz Mirmohamed IH Technician

Enclosures

Tomme two

Tommie Green, CIEC Professional Industrial Hygienist

Photo 1

Apparent water damage and buckling in the bathroom cabinet

Photo 2

Suspect visible mold growth on the walls and the HVAC supply vent in the bathroom

Photo 3

Apparent water damage on the bathroom front wall baseboard

Photo 4

Apparent water damage and Suspect visible mold growth in the kitchen front floor mounted cabinet

Suspect visible mold growth on the HVAC supply vent in the living room

í

Phoenix EnviroCorp 4020 SHIPYARD BLVD.

CHAIN OF CUSTODY

Seem Ref# 21071032 LABORATORY TEST REQUEST

LUO 1D: 09 3-102 mple date: 7/16/2021 CONTACT: Shaenaz Mirmohamed TELEPHONE (910) 397-0370 FAX (910) 313-6094 Sample date: PEC Job #: 21-21-112A-IAQ-M SITE ADDRESS: 302 Grass Lane, Unit 212, Wilmington, NC 28405 PLEASE EMAIL RESULTS TO: KMGREEN@PHOENIXENVIROCORP.COM SAMPLE TYPE: NUMBER OF SAMPLES: TURN AROUND TIME SPECIFIED: Spore Trap - Micro-5 Immediate ____ 24 hr _ 48 hr __X__ Standard Surface Samples 1 Sample Sample Lab Analysis % Relative Sample # Temperature Volume Requested Humidity *F 071621-SM-01 Bathroom 25L S001 51.6 77.9 071621-SM-02 Rear right bedroom 25L S001 51.7 78.0 071621-SM-03 Rear left bedroom 25L S001 49.5 78.5 071621-SM-04 Kitchen/Living room 25L S001 51.0 80.0 071621-SM-05 Front left bedroom 25L S001 52.1 79.1 071621-SM-06 Outside - Front 25L S001 74.2 83.4 071621-SM-07 Outside - Rear 25L S001 071621-SM-08 Kitchen cabinet on front wall 1 cm sq S001T NA NA 071621-SM-09 Bathroom HVAC supply vent 1 cm sq S001T NA NA 071621-SM-10 Bathroom left wall 1 cm sq S001T NA NA samples accepted Shoenog Memchamed Samples Collected By (Printed Name and Signature):

CHAIN OF CUSTODY RECORD

Date Signed:

7/16/2021

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
7/16/2021	15:30	Intact	Shomoz Memchaned	Vielsym 7.19.21
			AFFILIATION:	AFFILIATION:

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 07/19/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			-	-	Date	Sampled	: 07/16/21			
Attn: Phoenix Enviro Corp.							: 07/19/21			
4020 Shipyard Blvd.										
Wilmington, NC 28403				Date Analyzed: 07/19/21 Date Reported: 07/19/21						
;;j;						Revised				
	Project Name: 21-21-112A-IAQ-M Project Address: 302 Grass Ln. Unit 212									
					Project City, S					
					SEEML Ref					
TEST METHOD: DIRECT N	/IICROSCC	PY EXAMIN	ATION SE	EML SOP						
Client Sample ID		71621-SM-0			-)71621-SM-02	2		071621-SM-03		
			•							
Location		Bathroom		Rear Right Bedroom				ear Left Bedroon		
Lab Sample ID	2	10719032-09	3	2	10719032-09	4		210719032-095		
Comments										
Hyphal Fragments										
Pollen										
Spore Trap Used		M5			M5			M5		
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	
Alternaria										
Ascospores	5	200	24							
Basidiospores	2	80	10	2	80	11	5	200	17	
Bipolaris/Drechslera										
Chaetomium		1			1					
Cladosporium	1	40	5	2	80	11	14	560	48	
Curvularia		1			1		1	40	3	
Epicoccum		1 1			1					
Cercospora		1			1					
Fusarium		1 1			1					
Memnoniella										
Nigrospora										
Penicillium/Aspergillus	13	520	62	15	600	79	9	360	31	
Polythrincium	-		-	_		-	_		-	
Rusts										
Smuts/Periconia/Myxomy										
Spegazzinia										
Stachybotrys										
Stemphylium										
Tetraploa										
Torula										
Ulocladium										
Colorless/Other Brown*										
Oidium										
Zygomycetes				1			1			
Pithomyces										
Background debris (1-5)**	3			3			3			
Sample Volume(liters)	25			25			25			
TOTAL SPORES/M ³	21	840		19	760		29	1160		
	<u> </u>	040		1.0			20			

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Augel Gosnell Angel Gosnell, Approved Laboratory Signatory 102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Spore Trap Report

			•			Sampled:	07/16/21			
Attn: Phoenix Enviro Corp.						Received:				
4020 Shipyard Blvd.				Date Analyzed: 07/19/21						
Wilmington, NC 28403				Date Reported: 07/19/21						
	Date Revised									
	Project Name: 21-21-112A-IAQ-M Project Address: 302 Grass Ln. Unit 212									
Project City, State, ZIP: Wilmington, NC 28405										
					SEEML Ref					
TEST METHOD: DIRECT N	AICROSCC		ATION SE	EML SOP			210710002	-		
Client Sample ID		71621-SM-0			71621-SM-0	5	071621-SM-06			
•										
Location		hen / Living Ro		Front Left Bedroom				Outside- Front		
Lab Sample ID	210719032-096			2	10719032-09)7	2	210719032-098		
Comments										
Hyphal Fragments							2	80		
Pollen										
Spore Trap Used		M5			M5			M5		
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	
Alternaria				1			1			
Ascospores							5	200	8	
Basidiospores	1	40	<1	1	40	<1	22	880	36	
Bipolaris/Drechslera										
Chaetomium										
Cladosporium	8	320	3	1	40	<1	13	520	21	
Curvularia							3	120	5	
Epicoccum	1	40	<1				1	40	2	
Cercospora										
Fusarium										
Memnoniella										
Nigrospora										
Penicillium/Aspergillus	278	11100	97	134	5360	99	1	40	2	
Polythrincium		1			1					
Rusts										
Smuts/Periconia/Myxomy							15	600	25	
Spegazzinia										
Stachybotrys										
Stemphylium										
Tetraploa										
Torula										
Ulocladium										
Colorless/Other Brown*										
Oidium										
Zygomycetes										
Pithomyces							1	40	2	
Background debris (1-5)**	3			3			3			
Sample Volume(liters)	25			25			25			
TOTAL SPORES/M ³	288	11500		136	5440		61	2440		
Revisions:	200									

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Augel Gosnell Angel Gosnell, Approved Laboratory Signatory 102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Spore Trap Report

			000	е пар керо		nled: 07/16/21		
Attn: Phoenix Enviro Corp.				Date Sampled: 07/16/21 Date Received: 07/19/21				
4020 Shipyard Blvd.				Date Received: 07/19/21 Date Analyzed: 07/19/21				
Wilmington, NC 2								
	0403				Date Reported: 07/19/21			
					Date Revised: Project Name: 21-21-112A-IAQ-M			
				Dra	Project Address: 302 Grass Ln. Unit 212 Project City, State, ZIP: Wilmington, NC 28405			
				FIU	FML Deferen	ce # : 21071903	11, NC 20400	
TEST METHOD: DIRECT N						ce # : 21071903	2	
		71621-SM-0						
Client Sample ID								
Location		Outside- Rear						
Lab Sample ID	2	10719032-09	99					
Comments								
Hyphal Fragments	1	40						
Pollen								
Spore Trap Used		M5						
	raw ct.	spores/m ³	%					
Alternaria								
Ascospores	7	280	12					
Basidiospores	21	840	36					
Bipolaris/Drechslera								
Chaetomium								
Cladosporium	12	480	21					
Curvularia								
Epicoccum								
Cercospora								
Fusarium								
Memnoniella								
Nigrospora	2	80	3					
Penicillium/Aspergillus								
Polythrincium								
Rusts								
Smuts/Periconia/Myxomy	16	640	28					
Spegazzinia								
Stachybotrys								
Stemphylium								
Tetraploa								
Torula								
Ulocladium								
Colorless/Other Brown*								
Oidium								
Zygomycetes								
Pithomyces								
Background debris (1-5)**	3							
Sample Volume(liters)	25							
TOTAL SPORES/M ³	58	2320						
Revisions:				•				

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless, other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Surface and Bulk Sample Report

	Suria	ce and Bulk Samp		07/10/01
			Date Sampled:	
Attn: Phoenix Enviro Corp.			Date Received:	
4020 Shipyard			Date Analyzed:	
Wilmington, N	28403		Date Reported:	07/19/21
			Date Revised:	
				21-21-112A-IAQ-M
				302 Grass Lane, Unit 212
			Project City, State ZIP:	÷
			SEEML Reference #:	210719032
TEST METHOD: Direct Micro				
Client Sample ID	071521-SM-08	071521-SM-09	071521-SM-10	
Location	Kitchen Cabinet on Front Wall	Bathroom HVAC Supply Vent	Bathroom Left Wall	
SEEML Sample ID	210719032-100	210719032-101	210719032-102	
Sample Type	Таре	Таре	Таре	
	Quantification*	Quantification*	Quantification*	
Hyphal Fragments		Scattered	Scattered	
Pollen				
General Impressions **	NFG	FG	FG	
Fungal Spore:				
Alternaria				
Acremonium				
Ascospores				
Basidiospores	Scattered Spores			
Bipolaris/Drechslera				
Cercospora				
Chaetomium				
Cladosporium		М	L	
Curvularia				
Epicoccum				
Fusarium				
Geotrichum sp.				
Memnoniella				
Myxomycetes				
Nigrospora				
Penicillium/Aspergillus				
Pithomyces				
Rusts/Smuts				
Stemphylium				
Tetraploa				
Ulocladium				

** General Impressions: NFG = No Fungal Growth, FG = Fungal Growth, MFG = Minimal Fungal Growth Or Growth in vicinity

Quantification of fungal growth is done by semi-quantitative grading using the following ranges:

L = 101-1,000 fungal spores

Scattered Spores, 1-20 fungal spores

VL = 21-100 fungal spores

ee iungai spores

M = 1,001-10,000 fungal spores

H = >10,000 fungal spores

ND = No Fungal Spores Detected

Disclaimer: This report relates only to the samples tested

Respectfully submitted, SEEML

Angel Gosnell, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233- 3770 Fax: (864) 233- 6589 AIHA-LAP, LLC EMLAP # 173667 Texas License: LAB1016

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin
Acremonium crotocinigenum	Crotocin
Aspergillus favus	Alfatoxin B, cyclopiazonic acid
Aspergillus fumigatus	Fumagilin, gliotoxin
Aspergillus carneus	Critrinin
Aspergillus clavatus	Cytochalasin, patulin
Aspergillus Parasiticus	Alfatoxin B
Aspergillus nomius	Alfatoxin B
Aspergillus niger	Ochratoxin A, malformin, oxalicacid
Acremonium crotocinigenum	Crotocin
Aspergillus nidulans	Sterigmatocystin
Aspergillus ochraceus	Ochratoxin A, penicillic acid
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin
	Ausdiol, austamide,
Aspergillus ustus	austocystin, brevianamide
Aspergillus terreus	Citreoviridin
	Alternariol, altertoxin, altenuene, altenusin,
Alternaria	tenuazonic acid
Arthrinium	Nitropropionic acid
	Cytochalasin, sporidesmin,
Bioploaris	sterigmatocystin
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin
Cladosporium	Cladosporic acid
Clavipes purpurea	Ergotism
Cylindrocorpon	Trichothecene
Diplodia	Diplodiatoxin
Fusarium	Trichothecene, zearalenone
Fusarium moniliforme	Fumonisins
Emericella nidulans	Sterigmatocystin
Gliocladium	Gliotoxin
	Griseofulvin, dechlorogriseofulvin, epi-
Memnoniella	decholorgriseofulvin, trichodermin,
	trichodermol
Myrothecium	Trichothecene
Paecilomyces	Patulin, viriditoxin
Penicillium aurantiocandidum	Penicillic acid
Penicillium aurantiogriseum	Penicillic acid
Penicillium brasilanum	Penicillic acid
Penicillium brevicompactum	Mycophenolic acid
Penicillium camemberti	Cyclopiazonic acid
Penicillium carneum	Mycophenolic acid, Roquefortine C
Penicillium crateriforme	Rubratoxin

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	July 16, 2021
For:	Quanesha Mullins Wilmington Housing Authority 1524 S. 16 th Street,

Remediation Contractor:

On-Site Consultant:

Not determined

Wilmington, NC 28401

Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370

Approved Signatory:

Shoemong V finnchamed

Shaenaz Mirmohamed IH Technician

Tomm tu

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECT	TION 1.0 REMEDIATION PROCEDURES	
1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	7
1.6	Post Remediation Verification Testing	7
SECT	TION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	7
2.2	Project Description	7
SECT	TION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	8
SECT	TION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	9
SECT	TION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SECT	TION 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SECT	TION 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	9
7.2	Definitions	10
7.3	Quality Assurance	11
7.4	Materials and Equipment	12

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Negative air pressure within the work area shall be tested and recorded at initiation of the project and hourly thereafter by use of a manometer to ensure the desired pressure of -0.02 inches of water, which is comparable to four changes per hour.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the

PEC Job #: 21-21-112A-IAQ-M

specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow. Prior to isolating the vents, the register covers (diffusers) shall be removed, and the supply shall be isolated at the metal boot. Once isolated, the registers and surrounding building materials shall be cleaned.
- The interior of the air handler, rigid duct system, intake box, etc. shall be thoroughly cleaned by an HVAC professional experienced in mold remediation. The interior can be cleaned with mechanical methods that aggressively disturb all interior surfaces and filter the disturbed airborne particulates.

PEC Job #: 21-21-112A-IAQ-M

- Cleaning of components shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris.
- PEC recommends the removal and disposal of the flex ducts when feasible, as well as any interior duct board where cleaning will damage the duct board. Once removed, the remediation contractor shall isolate the connection point where the flex duct and/or duct board was detached with a critical barrier (such as plastic, etc.) to prevent air flow.
- Once the HVAC system components are cleaned or replaced anew, the system shall remain off and isolated until acceptable post remediation results are obtained.
- A written document shall be obtained from the remediation contractor verifying that the HVAC system has been cleaned by an HVAC cleaning company with mold experience. This document shall include the property address and date of services and shall be filed with other mold remediation documents.

Note: For directional purposes "front" is determined by facing Grass Lane from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation.

Within the bathroom:

- Detach the floor mounted cabinet from the front wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.
- Remove the baseboard entirely from the front wall, thoroughly inspect the wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.

Within the kitchen:

• Detach the floor mounted cabinet from the front wall, and remove any affected drywall (i.e., drywall with apparent water damage/suspect visible mold growth) and extend the drywall removal within a 2-foot radius of the affected area when possible.

Throughout the unit (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

• Clean all surfaces, furnishings and contents as specified herein under general specifications for primary control areas.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Non-porous, semi-porous, and porous furnishings and contents shall be cleaned. If items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be to determine if they shall be disposed.

PEC Job #: 21-21-112A-IAQ-M

- All machine washable porous cloth items shall be cleaned and dried in a household washer and dryer. Other specialty items shall be cleaned by a dry cleaner that specializes in cleaning materials affected with mold. These items shall be removed from affected area(s) and shall not be reintroduced back into the area(s) until acceptable post remediation testing is established. If porous articles cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- Mattresses shall be cleaned utilizing HEPA vacuuming, NOT by pressure extraction or wet methods. If suspect visible mold growth is on the mattress or if the mattress cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be prior to disposal.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- In areas where drywall removal is specified around windows and doors, remove trim boards. The door casing(s) shall also be assessed to determine if they have sustained mold/water damage. If so, they shall be cleaned, or removed.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.
- Furnishings and contents that are specified for cleaning shall be protected with polyethylene in areas where building components are specified for removal, prior to the removal of building components to avoid cross contamination. The protective covering shall be removed, and the furnishings and contents shall be cleaned prior to post visual inspection and testing.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area. Materials shall be removed in a fashion to ensure that previously cleaned areas are not recontaminated (i.e. working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be bagged or wrapped with 6-mil polyethylene sheeting, sealed with duct tape, and carried to the waste container prior to visual inspection by the CIEC/CIE/IH. Materials shall be bagged and sealed directly after removal from unaffected building components.

Areas shall be allowed to dry for a period until specified RH and moisture levels have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter), dehumidification shall be required until moisture levels are at or below said levels,

PEC Job #: 21-21-112A-IAQ-M

and the RH level is at or below 40% +/-3% (for all interior areas). The remediation contractor shall verify water content of all wooden and cellulosic building components within the impacted areas, as well as temperature and RH prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

SECTION 2.0 SCOPE OF WORK (Note: Section 2 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp initial investigative report dated April 14, 2021.

Phoenix EnviroCorp investigative report dated July 28, 2021.

Phoenix EnviroCorp Chain of Custody dated April 12, 2021, and July 16, 2021.

Analytical reports dated April 13, 2021, and July 19, 2021.

2.2 **Project Description**

The procedures covered by this program include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and

PEC Job #: 21-21-112A-IAQ-M

disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by the program include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials will be appropriately protected during the removal process so that present and future exposures will not occur.

This protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it will become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no guidelines (PELs or TLVs) for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Sample results shall be available within seven (7) days of the completion of collection of all samples and will include the following information:

- Site Address
- Sample Number

PEC Job #: 21-21-112A-IAQ-M

- Location Sampled
- Analytical Method
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e. broken-pipe-line, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste bags shall be checked for integrity and hauled in an enclosed truck/vehicle or container to ensure that transportation to the landfill does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. Written programs shall accompany all referenced CFR publications. IICRC and NYCDOH guidelines for work procedures shall be followed by the remediation contractor. A copy of the NYCDOH protocols shall be on-site, along with this design, for reference by the site supervisor. ACGIH, IAQA, and ASHRAE publications shall be utilized as guidelines for interpretation by the CIEC/CIE/IH. This design shall be reviewed by the remediation supervisor prior to initiation of set-up for the project. Any questions regarding this project may be addressed with the on-site consultant listed for Phoenix EnviroCorp.

PEC Job #: 21-21-112A-IAQ-M

SITE: 302 Grass Lane, Unit 212, Wilmington, NC 28405

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination, with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted as a means to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, that may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as

PEC Job #: 21-21-112A-IAQ-M

required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

Contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134 and approved by NIOSH for protection in environments that contain microbial contaminants. The selected respirator for this project shall be a tight-fitting negative pressure ½ respirator equipped with HEPA cartridge (P-95, P-100). At minimum, an N-95 dust mask may be utilized during fine cleaning activities; however, the tight fitting ½ mask respirator shall be utilized during application of anti-microbial agents or biocides.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

Creekwood (14 Units) at 602, 712, 804, 805, 809 & 1008 N. 30th St., 617, 701, 707, 708, 902, 915 & 922 Emory St., and 2905 Clayton Place, Wilmington, NC 28405

602 N. 30th Street Wilmington, NC 28405 Page 1 of 2

November 18, 2022

Pamela Baldwin Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-305B-IAQ-M - 602 N. 30th Street, Wilmington, NC - Mold Investigation

Enclosed are the results of the mold investigation conducted at the above referenced unit on November 9, 2022. Phoenix EnviroCorp (PEC) was retained to conduct additional investigative activities and provide a mold remediation protocol.

Background Information: PEC conducted a mold investigation (i.e., background air sampling and surface sampling) at the above referenced unit on October 7, 2021, identifying elevated airborne mold spore levels (*Cladosporium* within the 2nd floor left bedroom) and surface mold growth within the 2nd floor bathroom, on the ceiling, to include *Stachybotrys*. Additionally, apparent water damage was noted in the kitchen.

During the October 7, 2021 investigation, the tenant reported water intrusion in the 2nd floor bathroom and the kitchen which occurred during Hurricane Florence.

This is a 2-story apartment building, built on a slab. The subject unit is on both floors and is fully furnished with contents throughout, and there is no carpet installed in the unit.

The 1st floor HVAC system was operating in the cool mode set at 67° F with the fan on auto, and the 2nd floor systems was operating in the heat mode with the fan in the on position.

Related Documents:

• PEC mold investigation report dated October 12, 2021

Note: For directional purposes "front" is determined by facing N. 30th Street from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following (see enclosed photographic documentation as well as photos from PEC's report dated October 12, 2021): 2nd floor bathroom

- Apparent water damage/suspect visible mold growth on the drywall ceiling/rear wall above the toilet. *A surface sample collected during the October 7, 2021 investigation identified Stachybotrys in this area*
- Apparent water damage to the baseboards along the rear wall

<u>Kitchen</u>

- Apparent water damage to the drywall ceiling along the rear wall. *This area is directly below the bathroom*
- Apparent water damage within the floor mounted cabinet with sink, along the rear wall
- No apparent water damage around the wall mounted cabinets along the rear wall

Throughout the unit

- Dust/suspect visible mold growth on HVAC supply vents in various locations throughout
- Excessive contents in various locations throughout the unit obstructing the visual inspection

Moisture Readings: Moisture readings were collected with a Tramex Survey Encounter meter. Multiple readings were taken to represent areas and materials reported. For drywall products, readings should be below fifty percent (50%). For wood products, normal moisture content should be less than fifteen percent (<15%).

Moisture content measurements were as follows:

• 1st floor hallway rear drywall wall associated with the HVAC closet = $\leq 10\%$

2nd floor bathroom

• Drywall walls and ceiling = $\leq 40\%$

<u>Kitchen</u>

• Drywall walls and ceiling = $\leq 30\%$

Conclusions: Sample results from PEC's October 7, 2021 visit identified elevated airborne mold spore levels of *Cladosporium* within the 2nd floor bathroom, and surface mold growth to include *Stachybotrys* within the unit. A mold remediation protocol that outlines remediation activities is attached.

Prior to commencement of mold remediation, the source of any water intrusions, leaks, and/or moisture/humidity issues shall be remedied. If water intrusions/moisture issues exist and are not remedied, mold can be expected to return.

After remediation activities are completed, but before put-back of removed components, post remediation verification shall be conducted. Upon notice, and for an additional fee, PEC can conduct post remediation verification testing.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Tomm have

Tommie Green, CIEC Professional Industrial Hygienist


Enclosures

Photo 1

Apparent water damage to the baseboards along the rear wall of the 2nd floor bathroom

Photo 2

Dust/suspect visible mold growth on HVAC supply vents in various locations throughout. *Note: Photo taken in the 2nd floor front right bedroom*

602 N. 30th Street Wilmington, NC 28405

Photo 3

Excessive contents in various locations throughout the unit obstructing the visual inspection

Photo 4

Excessive contents in various locations throughout the unit obstructing the visual inspection

SITE: 602 N. 30th Street, Wilmington, NC 28405

PEC Job #: 21-21-305B-IAQ-M November 18, 2022

MOLD/BIOLOGICAL CONTAMINANT REMEDIATION PROTOCOL

Date:	November 18, 2022
For:	Pamela Baldwin Wilmington Housing Authority 1524 S. 16 th Street Wilmington, NC 28401
Remediation Contractor:	Not determined
On-Site Consultant:	Phoenix EnviroCorp (PEC) 4020 Shipyard Boulevard Wilmington, NC 28403 (910) 397-0370
Approved Signatory:	

Tomm ton

Tommie Green, CIEC Professional Industrial Hygienist

TABLE OF CONTENTS

SECTION 1.0 REMEDIATION PROCEDURES

1.1	Project Set Up	3
1.2	Local Exhaust System	3
1.3	Remediation Specifications	4
1.4	Removal Procedures	6
1.5	Cleanup Overview	7
1.6	Post Remediation Verification Testing	7
SECT	FION 2.0 SCOPE OF WORK	
2.1	Investigative Reports and Other Related Documents	8
2.2	Project Description	8
SECT	FION 3.0 AIR MONITORING	
3.1	Responsibilities of the CIEC/CIE/IH	8
3.2	Personal Monitoring	8
3.3	Sample Integrity and Reporting	9
SECT	FION 4.0 MATERIAL REPLACEMENT	
4.1	Material Replacement	9
SECT	FION 5.0 SPILL CLEANUP REQUIREMENTS	
5.1	Spills	9
SECT	FION 6.0 WASTE CONTROL	
6.1	Waste Disposal	9
SECT	TION 7.0 SUPPLEMENTAL INFORMATION	
7.1	Applicable Publications	10
7.2	Definitions	10
7.3	Quality Assurance	12
7.4	Materials and Equipment	13

SECTION 1.0 REMEDIATION PROCEDURES

1.1 Project Set Up

- The owner or powers that be shall supply temporary power for remediation equipment. The existing electrical system may be utilized, with permission of the owner or powers that be. Determining specific electrical load/safety requirements, including, but not limited to, the use of a temporary GFCI electrical panel box shall be the responsibility of the abatement contractor.
- HVAC system shall be isolated.
- 6-mil polyethylene sheathing shall be erected to separate primary control areas (PCA) from remaining areas. Control areas shall be selected so that specified building materials (specified herein, in section 1.3, under primary control areas) may be removed or cleaned and dried.
- HEPA Air Filtration Devices shall be utilized for each separate control area. Critical barriers shall consist of 6-mil polyethylene so that primary control areas are isolated from remaining areas. HEPA filtration units shall be exhausted from the PCA to the outside of the building through windows/doors. Dehumidification units must be installed in the PCA to sufficiently dry components.
- A remote wash off station shall be set up to allow for employees to wash hands and faces after egress from the work area.
- Ingress/Egress to the control area(s) shall be, at minimum, sealed with a 2-way polyethylene air lock.
- Entrances to the building shall be marked as indicated in Section 7.4 of this document.

1.2 Local Exhaust System

- Once sealed, the primary control area shall be ventilated with a local HEPA air filtration device that shall ensure a minimum of four (4) air changes per hour. The air filtration device shall be placed within the containment work area.
- Local HEPA exhaust shall be utilized where cleaning of contents is required and/or in the immediate vicinity of remediation activities of building materials.
- In interior sections requiring surface area cleaning, local HEPA filtration may be exhausted within the area to scrub microbials from ambient air. This process shall only be conducted after fine cleaning has been completed.
- Negative pressure within the contained work area shall be maintained throughout the project until clearance is obtained.
- Negative air machines shall be exhausted to exterior portions of the building to adequately ensure that negative pressure is achieved.
- Dehumidification devices with HEPA filtration may be incorporated as filtration devices in conjunction with true HEPA filtration devices; they may not replace the true HEPA filtration devices.

Note: Formula for determination of adequate HEPA filtration:

Total feet per minute = Volume of work area $(ft^3)/15$ minutes #AFD Units needed = (Total feet per minute)/Capacity of Unit (ft³)

• At initiation of final cleaning stages, relative humidity shall be at 40% (+/-3%) and moisture content of wooden components shall be at or below 15% as determined by Delmhorst moisture meter or equivalent meter. Moisture mapping and direct read T/RH shall be recorded by the remediation contractor until the specified levels have been achieved. Control areas shall be dehumidified during cleaning and mold remediation activities to ensure removal of surface moisture created during application of water. Drying of structural components that have been treated with encapsulating anti-microbial agents will be necessary.

SITE: 602 N. 30th Street, Wilmington, NC 28405

• Moisture levels shall be recorded and documented by the remediation contractor upon successful completion of dehumidification.

1.3 Remediation Specifications

- Prior to commencement of mold remediation activities by the remediation contractor, the source of any water intrusions, leaks, and/or moisture/humidity problems shall be remedied by the owner. If water intrusions, leaks, and/or moisture/humidity problems exist and are not corrected, mold growth can be expected to return.
- All remediation procedures listed that involve the removal of building materials shall employ polyethylene critical barriers, negative air pressure, and HEPA filtration (i.e., primary control areas).
- The remediation contractor shall ensure that the filters are properly capped prior to switching off the air scrubbers. If the filters are not properly capped, the backflow can cause mold spores to re-release back into the control area, essentially re-contaminating an area that has already been cleaned.
- All remediation activities shall be conducted in a manner that does not allow dissemination of mold spores. Remediation procedures shall begin from the side of the control area furthest away from air filtration devices.
- Cleaning procedures shall be repeated until the area is visibly free of dust and debris.
- Engineering controls set up during the remediation process shall remain in place until remediation has been completed and acceptable post remediation sampling results have been achieved.
- Federal and/or state regulations require that suspect asbestos containing materials in public and commercial buildings shall be inspected for asbestos prior to renovations or demolition. Based on these regulations, PEC recommends that building materials that may be disturbed during mold remediation be tested for asbestos content prior to their disturbance to prevent asbestos contamination.
- If cleaning procedures outlined in this remediation plan outweigh the cost of replacement for selected items, the remediation contractor shall give the owner the option to clean or dispose of those items.
- Reinstallation of building materials and/or components shall only be conducted once acceptable post remediation results are obtained.
- Any chemicals used on this project shall be EPA approved and used only as directed by the manufacturer. MSDS shall be available for review upon request.

HVAC System

- The HVAC system(s) that services or run through the primary control area/affected area shall be shut down prior to remediation activities.
- The spaces that are normally climate-controlled by the HVAC system that have been shut down shall be maintained under proper humidity levels (between 30 and 60% utilizing dehumidifiers, etc.) while the system is not in operation.
- All HVAC supply/return vents within the primary control area/affected area shall be isolated with a critical barrier (i.e., plastic, etc.) to prevent air flow. Prior to isolating the vents, the register covers (diffusers) shall be removed, and the supply shall be isolated at the metal boot. Once isolated, the registers and surrounding building materials shall be cleaned.
- The interior of the air handler, rigid duct system, intake box, etc. shall be thoroughly cleaned by an HVAC professional experienced in mold remediation. The interior shall be cleaned with mechanical methods that aggressively disturb all interior surfaces and filter the disturbed airborne particulates to avoid cross contamination, or other equivalent methods.
- Cleaning of components shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris.

SITE: 602 N. 30th Street, Wilmington, NC 28405

PEC Job #: 21-21-305B-IAQ-M November 18, 2022

- PEC recommends the removal and disposal of the flex ducts when feasible, as well as any interior duct board where cleaning will damage the duct board. Once removed, the remediation contractor shall isolate the connection point where the flex duct and/or duct board was detached with a critical barrier (such as plastic, etc.) to prevent air flow.
- The remediation contractor shall be responsible for coordinating the cleaning of the HVAC system and other specified remediation to avoid cross contamination.
- Once the HVAC system components are cleaned or replaced anew, the system shall remain off and isolated until acceptable post remediation results are obtained.
- A written document shall be obtained from the remediation contractor verifying that the HVAC system has been cleaned by an HVAC cleaning company with mold experience. This document shall include the property address and date of services and shall be filed with other mold remediation documents.

Note: For directional purposes "front" is determined by facing N. 30th Street from inside the unit, unless otherwise noted.

Primary Control Areas/Affected Areas

Critical barriers, negative air pressure, and HEPA filtration shall be established to isolate the following areas as Primary Control Areas to perform the specified mold remediation.

Within the 2nd floor bathroom:

- Remove the entire drywall ceiling (approximately 6-feet by 8-feet).
- Detach the toilet and floor mounted cabinet to allow access to the walls and floor obstructed by the toilet and cabinet.
- Remove all baseboards and the sheet flooring.
- Remove the entire shower surround.
- Remove the entire rear drywall wall (approximately 8-feet by 8-feet).
- Remove any subflooring that cannot be properly cleaned (i.e., wood rot, etc.).
- Assess the drywall uncovered by the removal of specified baseboards/shower surround and remove any additional affected drywall (i.e., drywall with suspect visible mold growth/apparent water damage) and extend the drywall removal within a 2-foot radius of any affected areas when possible.

Within the kitchen:

- Remove the entire drywall ceiling (approximately 7-feet by 11-feet). Note: The apparent water damaged area begins at the rear wall and extends approximately 3-feet toward the front of the room.
- Detach the floor mounted cabinets along the rear wall.
- Remove an 11-foot by 3-foot section of drywall from the rear wall beginning at the left wall and extending 11-feet toward the right; and beginning at the floor and extending up 3-feet.

Throughout the Unit (Negative air pressure is not required in areas where building components are not specified for removal, but HEPA filtration is required):

- Move all contents to allow access and viewing of all walls and floors.
- Clean all surfaces, furnishings and contents as specified below under general specifications for primary control areas. (Note: Elevated airborne mold spore levels and surface mold growth, to include Stachybotrys was identified within the unit in October 2021, per PEC's report dated October 12, 2021.
- Areas of specified subflooring or ceiling removal shall be sealed with poly (i.e., critical barrier) after cleaning, but before HEPA air scrubbing after cleaning, to prevent air flow from areas outside the containment area. An access door (i.e., poly flap taped in place, zipper, etc.) shall be installed in the critical barrier for easy access to conduct a visual inspection of the building materials behind the critical barrier.

General Specifications for Primary Control Areas

- Open plumbing lines and drains within the control areas shall be isolated with a critical barrier consisting of 6-mil poly.
- The water line to toilets within the control areas shall be shut off and the toilets shall be isolated with a critical barrier consisting of 6-mil poly.
- Cleaning of components/materials shall consist of a method that thoroughly removes visible mold growth, settled concentrations of mold spores, and/or dust and debris (i.e., HEPA vacuuming, wet wiping, or other approved methods), followed by dehumidification/drying.
- Non-porous, semi-porous, and porous furnishings and contents shall be cleaned. If items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be to determine if they shall be disposed.
- All machine washable porous cloth items shall be cleaned and dried in a household washer and dryer. Other specialty items shall be cleaned by a dry cleaner that specializes in cleaning materials affected with mold. These items shall be removed from affected area(s) and shall not be reintroduced back into the area(s) until acceptable post remediation testing is established. If porous articles cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- Mattresses shall be cleaned utilizing HEPA vacuuming, NOT by pressure extraction or wet methods. If suspect visible mold growth is on the mattress or if the mattress cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be prior to disposal.
- Exterior surfaces of electrical appliances, electrical equipment, and light fixtures shall be cleaned, utilizing wet method and HEPA vacuuming. These items shall be disconnected from all electrical sources prior to cleaning. If these items cannot be cleaned efficiently, the abatement contractor shall consult with the owner/powers that be.
- All wall/ceiling cavity insulation shall be disposed in areas that specify the removal of drywall/wallboard. The abatement contractor shall visually inspect the back side of surrounding drywall/wallboard for water damage and/or suspect mold growth and document any findings. If additional suspect mold growth or water damage is observed beyond the specified removal area, additional drywall/wallboard shall be removed until no suspect visible mold growth or water damage is observed.
- All penetrations within the controlled area that adjoin unaffected or non-accessible areas, including outdoor areas, crawlspaces, etc., shall be cleaned (as far as one can reach) and then sealed with 6-mil poly, extending six (6) inches on all sides.
- In areas of specified wallboard removal, all components within the wall/ceiling cavities shall be cleaned. Any wooden structural components with mold stains or mold growth in pitted surfaces shall be HEPA sanded (or other approved methods) to eliminate embedded mold growth.
- All joints or sills (where the structural system meets, where the sill plate meets the floor, etc.) shall be aggressively disturbed to remove embedded mold growth and spores.
- Furnishings and contents that are specified for cleaning shall be protected with polyethylene in areas where building components are specified for removal, prior to the removal of building components to avoid cross contamination. The protective covering shall be removed, and the furnishings and contents shall be cleaned prior to post visual inspection and testing.
- The remediation contractor shall document any drywall/wallboard that requires removal, in addition to the specified amount, prior to removal (i.e., drywall that is specified to be assessed by the remediation contractor, etc.). Documentation shall include photos and specific location at a minimum.

1.4 Removal Procedures

The contractor shall maintain surfaces of the control area free of accumulation of dust and debris. Additionally, they shall restrict the spread of dust and debris, keeping waste from being distributed over the work area.

Materials shall be removed in a fashion to ensure that previously cleaned areas are not re-contaminated (i.e., working from one end of the control area to the other). The contractor may be required to re-clean areas based on a visual inspection by the CIEC/CIE/IH, if the areas are not visibly clean.

Contaminated building materials that have been removed, and additional materials and debris generated during remediation, shall be placed in an enclosed container prior to transporting the material through the building and to the waste container, and prior to visual inspection by the CIEC/CIE/IH.

Areas shall be allowed to dry for a period until RH and moisture levels specified below have been achieved. Any remaining building products that are directly impacted by remediation shall be tested for moisture content. Wooden and cellulosic building components (e.g., wall studs, drywall, etc.) shall be tested for moisture content. If the moisture content is > 15% in wood products or > 12% in cellulosic products (utilizing a Delmhorst moisture meter or equivalent), dehumidification shall be required until moisture levels are at or below said levels, and the RH level is at or below 40% +/-3% (for all interior areas). The remediation contractor shall verify moisture content of all wooden and cellulosic building components within the impacted areas, as well as RH levels prior to scheduling post remediation verification.

1.5 Cleanup Overview

The contractor shall personally review the cleaning process prior to contacting the CIEC/CIE/IH for the post remediation testing. If accumulations of debris and dust are significant, the CIEC/CIE/IH will require recleaning prior to post remediation verification sampling.

The CIEC/CIE/IH shall make a visual inspection and conduct post remediation sampling after the final cleaning is complete.

1.6 Post Remediation Verification Testing

Prior to conducting post remediation sampling, HEPA filtration devices shall be allowed to operate for a minimum of 48 hours (the equivalent of 192 air changes), following fine cleaning, in all areas where remediation has been conducted. The HEPA filtration devices shall be sealed at the intake and turned off approximately two hours prior to post testing and reconvene within one hour after post testing, until acceptable post remediation results are established.

Post remediation sampling shall be conducted utilizing viable and/or non-viable sample methods. Air samples shall be collected in representative areas of the control areas. Surface sampling may be conducted at the discretion of the CIEC/CIE/IH.

Sampling shall be conducted in areas directly impacted by remediation procedures, where cleaning was conducted. The CIEC/CIE/IH shall determine acceptable post remediation status through interpretation of air sampling results, which will be based on indoor/outdoor comparisons, in combination with any surface samples collected, moisture readings, RH readings, visual observations, and any other pertinent information.

The owner/client will be responsible for post remediation testing. If air sample results indicate unacceptable airborne concentrations, the contractor shall be required to conduct a re-cleaning at the contractor's expense and absorb the cost for re-testing, until acceptable results are achieved.

Criteria for post remediation air sampling can be viewed in PEC's investigative report(s) listed in Section 2.1 below. This information can be found within the air sampling section of said report(s).

SECTION 2.0 SCOPE OF WORK (Note: Section 2.1 and Section 1.3 are essential to the full Scope of the Contractor's Work)

2.1 Investigative Reports and Other Related Documents

Phoenix EnviroCorp investigative reports dated October 12, 2021, and November 18, 2022.

Phoenix EnviroCorp Chain of Custody dated October 7, 2021.

Analytical reports dated October 8, 2021.

2.2 **Project Description**

The procedures covered by this program/protocol include the enclosure and drying of the said structure, the removal, handling, and disposal of building components compromised by mold/fungal growth, and the cleaning and disinfecting of existing building materials. Procedures for reconstruction are not considered in these specifications. Reconstruction of interior portions may not be conducted until procedures for remediation have been completed, the control areas have been inspected, and testing has returned acceptable post remediation results. Reconstruction of exterior portions may be conducted during the restoration to ensure that water intrusion is abated.

The objectives covered by this program/protocol include the remediation of materials shown to have surface contamination, water damage, and/or exposure to elevated airborne mold spore levels, without subjecting the workers, installation employees, and occupants to microbial contaminants. In addition, contract employees, occupants, and materials shall be appropriately protected during the removal process to avoid exposure.

This program/protocol is provided as a guideline. Any deviation requests from this protocol shall be addressed to the CIEC/CIE/IH for consideration. At present there are no Federal or State requirements regarding microbial remediation projects; however, OSHA General Construction Code of Federal Regulations (29 CFR 1926) shall be followed.

Remediation shall be completed as close as possible to the date that this protocol was drafted, as the specifications outlined within represent conditions at the time the investigative services were conducted. Due to the volatility of mold, the current protocol may not reflect all necessary remediation if conditions are allowed to continue. Further, if time lapses allowing conditions to change, it may become increasingly difficult to obtain successful clearance testing results.

SECTION 3.0 AIR MONITORING

3.1 Responsibilities of the CIEC/CIE/IH

Monitoring of airborne concentrations will be performed in accordance with the requirements of this program. Prior to conducting air sampling and/or surface sampling for clearances, the CIEC/CIE/IH shall conduct a visual inspection of the area. Temperature and RH shall be recorded during the air sampling phase of clearance. All air sampling shall be conducted in such a manner as to provide a valid representation of airborne mold levels both inside and outside the work areas. If analysis of air samples indicates that airborne concentrations exceed acceptable limits, the contractor shall conduct re-cleaning at the contractor's expense.

3.2 Personal Monitoring

No personal monitoring will be conducted by the CIEC/CIE/IH unless the remediation contractor requests monitoring for OSHA compliance. Presently there are no PELs or TLVs for microbial contaminants. It is the remediation contractor's responsibility to determine if OSHA personal sampling may be required during application of anti-microbial agents.

3.3 Sample Integrity and Reporting

Samples shall be sealed, labeled, and a chain of custody initiated according to laboratory procedures.

Post remediation sample results shall be available within seven (7) business days of the completion of collection and will include the following information:

- Site Address
- Sample Number
- Location Sampled
- Collection Date(s)
- Person Taking Sample(s)
- Additional Comments (if any)
- Analyst Signature

SECTION 4.0 MATERIAL REPLACEMENT

4.1 Material Replacement

The general contractor/replacement contractor may begin material replacement after the CIEC/CIE/IH informs all parties of acceptable post remediation sample results.

With ongoing construction activities ambient air levels are expected to be elevated over what might be normally expected. Additional testing should not be necessary after remediation procedures have been completed and successful results have been obtained. In the event of another water intrusion (i.e., brokenpipeline, improper HVAC function, or building envelope compromise), an investigation shall be conducted within 24 to 48 hours of the event. Proper drying, if initiated within this time frame, should minimize the potential for microbial growth.

SECTION 5.0 SPILL CLEANUP REQUIREMENTS

5.1 Spills

MSDS shall be kept on site for all chemical products brought to the site by the remediation contractor. In the event of a chemical spill, the contractor shall initiate cleanup immediately. The contractor shall mop up any liquid with rags or other conventional absorbent. The spent absorbent shall be properly contained and disposed of as waste.

SECTION 6.0 WASTE CONTROL

6.1 Waste Disposal

Waste shall be disposed of at a locally selected landfill. Waste shall be transported to the landfill in such a way to ensure that it does not pose a potential hazard to the environment.

SECTION 7.0 SUPPLEMENTAL INFORMATION

7.1 Applicable Publications

The publications listed below form part of this program. This protocol shall be reviewed by the remediation contractor prior to initiation of set-up for the project. Any questions regarding this protocol shall be addressed with the generator or appropriate Phoenix EnviroCorp personnel.

Code of Federal Regulation (CFR Publications)

29 CFR 1910.134	Respiratory Protection
29 CFR 1910.145	Specifications for Accident Prevention, Signs and Tags
29 CFR 1926.28	Personal Protective Equipment
29 CFR 1926.59	Hazard Communication
29 CFR 1926.96	Occupational Foot Protection
29 CFR 1926.100	Head Protection
29 CFR 1926.101	Hearing Protection
29 CFR 1926.102	Eye and Face Protection
29 CFR 1926.403	Electrical General Requirements
29 CFR 1926.416	Safety General Requirements
29 CFR 1926.852	Demolition, Chutes
29 CFR 1926.1091	Record Keeping Requirements

Supplemental Guidelines

IICRC S520 2nd ed.	Standard and Reference Guide for Professional Water Damage Restoration
NYCDOH	Guidelines on Assessment and Remediation of Fungi in Indoor
	Environments
ACGIH	Bioaerosols: Assessment and Control
IAQA 01-2000	Recommended Guidelines for Indoor Environments
ASHRAE 62.2-2007	Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential
	Buildings

7.2 Definitions

Air Lock: A system that permits ingress and egress between a control area and non-control area, or other work areas, without allowing air movement between areas (e.g., three stage decon, three-way polyethylene flaps).

Air Sample: Refers to samples collected with spore trap air sample media (e.g., Micro-5, Cyclex D, or equivalent); also referred to as a non-viable air sample. May also refer to a sample collected on a disposable petri dish with Agar media by means of an Andersen Impactor (or equivalent) and sampling pump; also referred to as air culture (viable) sample. Sample media to be used in project is described under Section 1.6 (Post Remediation Verification Testing).

Area Monitoring: The sampling of airborne microbial concentrations outside the exclusion boundary, which may reach the breathing zone of the contractor or installation employees.

Asbestos Containing Materials (ACM): Refers to asbestos containing building materials that contain more than 1% asbestos by Polarized Light Microscopy (PLM) or Transmission Electron Microscopy (TEM).

Biocide: Refers to chemical agents that are specifically designed to eliminate viable microbial contamination,

with a phenol equivalent efficiency (e.g., Sodium Hypochlorite, Quaternary Ammonia Compounds).

Blower Door Test: Refers to the testing of static pressure and draw of air through the HVAC in cubic feet per minute (CFM) to rate the efficiency of the system.

Clearance Monitoring: Refers to air, bulk, or swab sampling conducted to demonstrate that the area specified for remediation has been completed by the contractor, left with present acceptable mold spore levels, and ready for re-construction.

Control Area: The area where microbial contaminants removal is performed, which is isolated by physical boundaries to prevent unauthorized entry of personnel, thereby preventing exposure to or the spread of microbial contaminants. Physical boundaries will be established and located such that the airborne contaminants are not allowed to escape the boundaries.

HEPA: High Efficiency Particulate Air. Refers to ventilation devices that are specifically designed to filter ambient air to an efficiency of 99.97%.

HVAC: Refers to the Heating, Ventilation, and Air Conditioning system.

Industrial Hygienist: Refers to a person who practices industrial hygiene and may act as a competent person regarding visual inspection of contaminated surfaces and clearance air and/or swab/bulk sampling. May also refer to a Certified Industrial Hygienist (CIH) as defined by the American Board of Industrial Hygiene (ABIH), a Certified Indoor Environmental Consultant as defined by the American Council for Accredited Certification (ACAC), or a Certified Indoor Environmentalist (CIE) as defined by the American Council for Accredited Certification (ACAC).

Microbial Contaminant: Refers to viable mold, fungi, pollen, bacteria, and or particulate, or their metabolites, which may be causative of epidemiological, immunotoxic, dermotoxic, neurotoxic, or enterotoxic disorders in the human population, or may be considered a pathogen or an opportunistic pathogen.

Non-Porous Materials: Refers to building materials with solid surfaces that may be successfully treated and cleaned by means of HEPA vacuuming or other approved method. Materials include flooring, hard goods, plastic, vinyl, and some wallboard systems.

Porous Materials: Refers to building materials and household goods that may allow microscopic particles (3-20 micron) to become trapped within the material that will not allow adequate cleaning. Materials include carpet, mattresses, and clothing.

Primary Control Area (PCA): Refers to a section of a facility that has been isolated by 6-mil polyethylene barriers where specific engineering controls (e.g., HEPA filtration, negative air pressurization, dehumidification, etc.) are required. In general, it is the area where remediation of water and mold damaged building materials is to be conducted.

Refrigerant Dehumidifier: Device used to remove water content from air and materials.

Relative Humidity (RH): Refers to the ratio of water vapor in the atmosphere to the amount required to saturate it at a given temperature.

Semi-Porous Materials: Refers to materials that may be somewhat porous, yet they may still allow for adequate cleaning. Materials include wooden beams and some wallboard systems.

Swab Sample: Refers to collection of a sample onto a sterile swab for analysis of mold, fungi, and bacteria by viable and/or non-viable analysis.

Tape-Lift Sample: Refers to collection of a sample onto clear scotch tape for analysis by direct microscopic examination (non-viable).

7.3 Quality Assurance

Medical Examinations

Before potential exposure to microbial contaminants, the remediation contractor shall provide workers with a comprehensive medical examination as required by 29 CFR 1910.134 as outlined by the Medical Monitoring Program.

Medical Records

The remediation contractor shall maintain complete and accurate medical records on employees as required by OSHA and the contractor's Medical Monitoring Program. The contractor may be asked to provide a copy of all medical records for approval by the consultant's representative.

Training

Each employee working on this contract shall be trained prior to the time of initial job assignment in accordance with mold specific and chemical specific training as indicated by the OSHA General Duty Clause and the Hazard Communication Standard. Each employee shall also receive training required by Federal guidelines listed in Section 7.1 of this document and project specifications.

Hazard Communication Program

The remediation contractor has established and implemented a Hazard Communication Program as required by 29 CFR 1910.1200 and may be asked to provide a copy of this written program. Hazard Communication training must include occupational hazards as directly related to working with fungi/mold and contamination of building components by fungal contamination, specific training for chemical hazards associated with biocide usage, and site specific MSDS sheets for commercial detergents and biocides utilized on the job site.

Respiratory Protection Program

The remediation contractor has established a Respiratory Protection Program, which complies with 29 CFR 1910.134. Physical examinations and fit testing are required for use of respiratory protection greater than an N-95 dust mask. Workers removing building materials contaminated by mold growth, applying anti-microbial agents, or workers subjected to exposures to anti-microbial agents shall be required to wear, at minimum, a tight-fitting negative pressure ½ mask respirator with P-100 filters. Therefore, -he OSHA Respiratory Protection Standard applies.

Analytical Testing Laboratory

Analysis of culturable biological samples collected on this project shall be conducted by a laboratory that participates in the Environmental Microbiological Proficiency Analytical Testing Program (EMPAT) of the American Industrial Hygiene Association (AIHA) and has shown to be proficient by proficiency analytical

testing (PAT) samples. Analysis of non-viable air and surface samples shall be conducted by a competent person.

7.4 Materials and Equipment

Equipment

The contractor shall make available to employees a complete set of personal protective equipment (PPE) as required by this program for entry into the controlled area. All personnel while in the control area or handling microbial contaminated waste shall wear protective clothing, respirators, and other PPE.

Respirators

The contractor shall furnish the appropriate respirator in accordance with 29 CFR 1910.134. At a minimum, an N-95 dust mask shall be utilized.

Special Clothing

Employees shall be provided with and required to wear: whole body disposable protective clothing, full body tyvek suits with head coverings, and latex gloves *(see table)* during all activities in the controlled area.

Chemical	Recommended Rubber Glove
Sodium Hypochlorite	Neoprene or Nitrile
Phenolic Compounds	Neoprene
Quaternary Ammonia Compounds	Polyvinyl Chloride (PVC)
Detergents	Latex

Eye Protection

The contractor shall provide chemical-resistant goggles to personnel engaged in cleaning and treatment activities and require them to be worn during application of anti-microbial agents and biocides.

Warning Signs and Labels

Standard approved warning signs shall be erected at all approaches to the control area as specified in 29 CFR 1910.145.

Anti-Microbial Agents

Anti-microbial agents utilized in interior quarters shall consist of quaternary ammonia compounds. No phenolic compounds shall be used in interior quarters with exception of Micro Ban Plus. Approval must be granted by the owner/powers that be prior to application. Anti-microbial agents shall be EPA approved. Commercial grade detergents shall be used to remove fungal contamination during cleaning phases prior to anti-microbial application, to include encapsulation.

June 24, 2022

Wilmington Housing Authority Attn: Chauntrell Burns 714 Emory St. - Creekwood Wilmington, NC 28405

Re: Mold Contamination Assessment at: 712 N. 30th St. Wilmington, NC 28405 Precision Project No.: 5241-22-0001-1IAQ

At the request of the Wilmington Housing Authority, Precision Environmental, Inc. (Precision) performed a mold contamination assessment within the above referenced residence.

This mold contamination assessment included a visual assessment of accessible areas, the collection of non-viable mold spore trap air samples, the collection of a single mold spore surface sample, moisture mapping and the collection of temperature/relative humidity readings.

Directional reference: Front is determined from within the residence facing N. 30th St.

Spore trap air samples were collected in the following areas:

- Kitchen
- Right hallway

In addition, a single exterior sample was collected for comparative purposes.

A non-viable surface sample was collected in the following area:

• Rear right room. HVAC supply flex duct

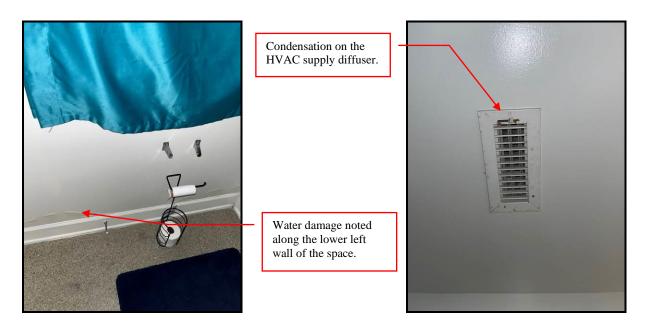
During Precision's site visit on June 13, 2022, the following were found/observed:

Kitchen

- The spore trap air sample collected within this area indicated no significantly elevated levels of mold growth as compared to the sample collected at the exterior of the residence.
- The relative humidity within the area was 59.9% which is within the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) guidelines for occupant's comfort of 30% to 60%.

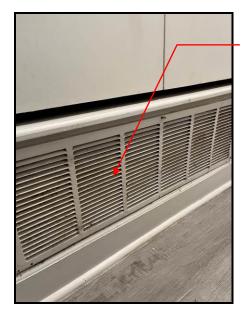
Rear right room

The surface sample collected within the HVAC supply flex duct revealed <1+ Cladosporium species indicating minimal mold growth within the duct. (The lab noted very few insect parts detected).</p>


Right hallway

- The spore trap air sample collected within this area indicated no significantly elevated levels of mold growth as compared to the sample collected at the exterior of the residence.
- The relative humidity within the area was 61.1% which is above the ASHRAE guidelines for occupant's comfort of 30% to 60%.

Bathroom


- > It was noted that water damage was observed along the lower left wall of the space.
- Condensation was noted on the HVAC supply diffuser within the bathroom.
- Moisture readings collected within the area via GE Protimeter Surveymaster in WME (measure mode) indicated the following:

- Lower left wall:
 - Wall: 93.8 (Wet)
 - Wall: 78.5 (Wet)

HVAC system

- > Dust and debris were noted on the HVAC return vent.
- Dust and debris were noted within the HVAC return plenum. Additionally, it was noted that a filter was not installed.

Dust and debris noted on the HVAC return vent.

Dust and debris noted within the return plenum.

Moisture measurements were collected using a GE Protimeter *Surveymaster*. Collected moisture measurements were evaluated based upon the following manufacturer's instructions:

%WME (measure mode) measurement of approximately:

Green zone readings (Between 0% and 15%) indicates that the material examined is "Dry"; Yellow zone readings (Above 15% but less than 20%) indicates that the material examined is "borderline condition"; Red zone readings (Above 20%) indicates that the material examined is "wet" or in "damp condition"

%WME (measure mode) = WME is the moisture level that would be attained by a piece of wood in equilibrium with the material being tested. As the critical moisture levels for wood are known, WME measurements enable the moisture meter user to establish if materials are in a safe air dry, borderline or damp condition.

Air samples for non-culturable fungal spores were collected using Zefon Air-O-Cell cassettes and High-Volume Sampling Pump for 10 minutes at a flow rate of 15 liters per minute as recommended by the manufacturer.

Surface samples were collected via clear tape collection adhered to laboratory supplied bio tape.

Quantities of mold found on surface samples are graded 1+ to 4+ with 4+ denoting the highest quantities.

Temperature/Relative humidity readings were collected utilizing a Fluke 971 Temperature Humidity Meter

Based on the investigation conducted within the residence, Precision has found evidence of surface mold within the HVAC ducts associated with the residence as well as water damage associated with the left bathroom wall.

The relative humidity level within the hall was above the acceptable range at the time of the assessment. The relative humidity level within the kitchen was within the acceptable range at the time of the assessment.

The relative humidity level at the exterior of the structure at the time of the investigation was 72.9%.

Recommendations

Precision recommends the following based on the limited mold investigation conducted on June 13, 2022:

All remediation activities should be conducted by mold remediation contractors with experience conducting mold remediation projects and all work should be conducted in accordance with standard industry practices.

If not previously addressed, any water leak present within the bathroom, which is likely the cause of the damage to the lower left wall, should be repaired to prevent further water damage to building components within the bathroom and adjacent areas.

An HVAC engineer or contractor shall assess the HVAC system servicing the residence in order to determine the cause of the elevated humidity level within the right hall area of the residence, which is the likely contributing factor for the formation of condensation within the bathroom.

General recommendations

- A. The HVAC system(s) serving work areas within residence shall be shut down prior to the start of all work. HVAC supply and return vents within work areas shall be sealed with critical barriers.
- B. Air scrubbers or negative air machines equipped with HEPA filters shall be installed within the work areas and shall remain operational/in place during remediation activities and for a minimum of twenty-four (24) hours following completion of remediation activities.
- C. All insulation exposed by the removal of walls shall be removed and disposed.
- D. All structural components exposed by the removal of walls shall be dried and decontaminated.
- E. Decontamination shall consist of wet wiping the material with a microbial agent as well as HEPA vacuuming affected components. Spraying areas with visible mold or suspect visible mold without physically removing the mold is unacceptable.
- F. <u>If, following removal of walls described below, additional moisture or mold issues are noted, removal shall</u> continue until an area one foot beyond noted issues are reached.
- G. Dehumidifiers shall be installed within the work areas and shall remain in place until components are dry.
- H. Following completion of remediation activities, the air scrubbers shall run for a minimum of 24 hours. Following the 24-hour air scrubbing period the machines shall be shut down and immediately sealed (both intake and exhaust).

- I. Following shut down of the air scrubbers, a clearance inspection may be conducted at the owner's discretion. The inspection should be conducted prior to the replacement of removed materials. Engineering controls (poly barriers, poly sheeting containment, air scrubbers, etc.) shall remain in place until receipt of acceptable final clearance visual/air monitoring results. If the owner chooses not to conduct the clearance inspection, the work area may be dismantled following the 24-hour air scrubbing period.
- J. If final visual/clearance sample analysis indicates elevated levels of non-viable mold spores (surface and/or air) within any of the work areas, the failed space and all of its surfaces shall be recleaned at no additional expense to the owner.

Area specific - Bathroom

- A. The bathroom shall be incorporated into a single work area and shall be enclosed within a single containment. The containment shall be constructed of poly sheeting and shall seal all penetrations leading out of the work area. Access to the work area shall be through a zippered entry.
- B. The HVAC supply diffuser shall be removed, decontaminated and stored for reinstallation at the conclusion of remediation activities.
- C. The wood base along the entire left wall shall be removed.
- D. The lower two (2) feet of the entire left wall shall be removed and disposed.
- E. The exposed wood components shall be assessed for moisture and deterioration and corrected/replaced as needed.
- F. All exposed components shall be dried and decontaminated.

Area specific - HVAC system

- A. Due to the missing HVAC return air filter, and the condition noted within the HVAC return plenum, it is presumed that the interior of the air handling unit is contaminated. Therefore the interior of the air handling unit (evaporator coils, blower/fan, etc.) shall be decontaminated.
- B. All surfaces within the return plenum shall be decontaminated.
- C. The remaining HVAC supply diffusers shall be removed, decontaminated and stored for reinstallation at the conclusion of remediation activities.
- D. The HVAC ducts shall be decontaminated by a contractor with experience decontaminating mold from within duct work without contaminating the residence.

Limitations

This report has been prepared to assist the Wilmington Housing Authority in evaluating the microbiological impact within the above referenced residence. Precision provided these services consistent with the level and skill customarily exercised by members of the profession currently practicing under similar conditions. This report is intended for the sole use of the Wilmington Housing Authority.

Additionally, the passage of time may result in a change in the environmental characteristics at this site. This report does not warrant against future operations or conditions that could affect the recommendations made. The results, findings, conclusions, and recommendations expressed in this report are based only on conditions that were observed during Precision's inspection.

If you need further information, please contact me at 910-763-3445.

Sincerely,

Precision Environmental, Inc.

Reggie Romero

Attachments: Laboratory Analysis/Chain of Custody Laboratory accreditation

Report for:

Mr. Jonathan Guetta Precision Environmental, Inc. 3802 Cherry Ave. Wilmington, NC 28403

Regarding: Project: PEI Job # 5241-22-0001-1IAQ; 712 N 30th St. Wilmington, NC EML ID: 2953563

Approved by:

Technical Manager Francina Thadigiri

Dates of Analysis: Spore trap analysis: 06-17-2022

Service SOPs: Spore trap analysis (EM-MY-S-1038) AIHA-LAP, LLC accredited service, Lab ID #179623

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received and tested. Information supplied by the client which can affect the validity of results: sample air volume.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Client: Precision Environmental, Inc. C/O: Mr. Jonathan Guetta Re: PEI Job # 5241-22-0001-1IAQ; 712 N 30th St. Wilmington, NC 3929 Old Lee Highway, Suite 91C, Fairfax, VA 22030 (866) 871-1984 Fax (856) 334-1040 www.emlab.com

Date of Sampling: 06-13-2022 Date of Receipt: 06-16-2022 Date of Report: 06-20-2022

SPORE TRAP REPORT: NON-VIABLE METHODOLOGY

Location:	00	61322-712 Kitchen			51322-712	
Comments (and holom)		<u>None</u>			Right hallw None	/ay
Comments (see below)						
Lab ID-Version‡:		14197733-		14197734-1		
Analysis Date:		06/17/2022	2		06/17/202	2
	raw ct.	% read	spores/m3	raw ct.	% read	spores/m3
Alternaria	1	100	7	1	100	7
Ascospores	1/8	25/100	80	1	25	27
Basidiospores	5	25	130	8	25	210
Cercospora						
Chaetomium						
Choanephora				1	100	7
Cladosporium	4	25	110	4	25	110
Curvularia				1	100	7
Epicoccum						
Nigrospora						
Other brown						
Penicillium/Aspergillus types†	1	25	27	1	25	27
Pithomyces						
Rusts						
Smuts, Periconia, Myxomycetes	11	100	73	3	100	20
Stachybotrys						
Stemphylium						
Torula						
Ulocladium						
Zygomycetes						
Background debris (1-4+)††	2+			2+		
Hyphal fragments/m3	13			7		
Pollen/m3	7			13		
Skin cells (1-4+)	1+			1+		
Sample volume (liters)	150			150		
§ TOTAL SPORES/m3			430			410

Comments:

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore.

[†] The spores of *Aspergillus* and *Penicillium* (and others such as *Acremonium, Paecilomyces*) are small and round with very few distinguishing characteristics. They cannot be differentiated by non-viable sampling methods. Also, some species with very small spores are easily missed, and may be undercounted.

 \dagger Background debris indicates the amount of non-biological particulate matter present on the trace (dust in the air) and the resulting visibility for the analyst. It is rated from 1+ (low) to 4+ (high). Counts from areas with 4+ background debris should be regarded as minimal counts and may be higher than reported. It is important to account for samples volumes when evaluating dust levels.

The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

For more information regarding analytical sensitivity, please contact QA by calling the laboratory.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

§ Total Spores/m3 has been rounded to two significant figures to reflect analytical precision.

Client: Precision Environmental, Inc. C/O: Mr. Jonathan Guetta Re: PEI Job # 5241-22-0001-1IAQ; 712 N 30th St. Wilmington, NC 3929 Old Lee Highway, Suite 91C, Fairfax, VA 22030 (866) 871-1984 Fax (856) 334-1040 www.emlab.com

Date of Sampling: 06-13-2022 Date of Receipt: 06-16-2022 Date of Report: 06-20-2022

SPORE TRAP REPORT: NON-VIABLE METHODOLOGY

Location:		061322-712-03:	
Comments (and held.)		Outside	
Comments (see below)		Α	
Lab ID-Version‡:		14197735-1	
Analysis Date:		06/17/2022	
	raw ct.	% read	spores/m3
Alternaria	12	100	80
Ascospores	71	25	1,900
Basidiospores	210	25	5,600
Cercospora	4	100	27
Chaetomium			
Choanephora			
Cladosporium	11/33	25/100	510
Curvularia	1	100	7
Epicoccum	1	100	7
Nigrospora	2	100	13
Other brown	1	100	7
Penicillium/Aspergillus types†			
Pithomyces			
Rusts			
Smuts, Periconia, Myxomycetes	3	100	20
Stachybotrys			
Stemphylium			
Torula			
Ulocladium			
Zygomycetes			
Background debris (1-4+) ^{††}	2+		
Hyphal fragments/m3	13		
Pollen/m3	13		
Skin cells (1-4+)	< 1+		
Sample volume (liters)	150		
§ TOTAL SPORES/m3			8,200

Comments: A) 33 of the raw count *Cladosporium* spores were present as a single clump.

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore.

[†] The spores of *Aspergillus* and *Penicillium* (and others such as *Acremonium, Paecilomyces*) are small and round with very few distinguishing characteristics. They cannot be differentiated by non-viable sampling methods. Also, some species with very small spores are easily missed, and may be undercounted.

 \dagger Åackground debris indicates the amount of non-biological particulate matter present on the trace (dust in the air) and the resulting visibility for the analyst. It is rated from 1+ (low) to 4+ (high). Counts from areas with 4+ background debris should be regarded as minimal counts and may be higher than reported. It is important to account for samples volumes when evaluating dust levels.

The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

For more information regarding analytical sensitivity, please contact QA by calling the laboratory.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

§ Total Spores/m3 has been rounded to two significant figures to reflect analytical precision.

Report for:

Mr. Jonathan Guetta Precision Environmental, Inc. 3802 Cherry Ave. Wilmington, NC 28403

Regarding: Project: PEI Job # 5241-22-0001-1IAQ; 712 N 30th St. Wilmington, NC EML ID: 2953563

Approved by:

Technical Manager Francina Thadigiri

Dates of Analysis: Direct microscopic exam (Qualitative): 06-17-2022

Service SOPs: Direct microscopic exam (Qualitative) (EM-MY-S-1039) AIHA-LAP, LLC accredited service, Lab ID #179623

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received and tested.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Client: Precision Environmental, Inc. C/O: Mr. Jonathan Guetta Re: PEI Job # 5241-22-0001-1IAQ; 712 N 30th St. Wilmington, NC 3929 Old Lee Highway, Suite 91C, Fairfax, VA 22030 (866) 871-1984 Fax (856) 334-1040 www.emlab.com

Date of Sampling: 06-13-2022 Date of Receipt: 06-16-2022 Date of Report: 06-20-2022

DIRECT MICROSCOPIC EXAMINATION REPORT

Background Debris and/or Description	Miscellaneous Spores Present*	MOLD GROWTH: Molds seen with underlying mycelial and/or sporulating structures†	Other Comments††	General Impression
Lab ID-Version [‡] : 1419	7732-1, Analysis Date: 0	06/17/2022: Tape sample 061322-712-04: Rear	right room. HVAC supp	ly flex duct
Heavy	Few	< 1+ <i>Cladosporium</i> species (spores, hyphal fragments)	Very few insect parts detected.	Minimal mold growth

* Indicative of normal conditions, i.e. seen on surfaces everywhere. Includes basidiospores (mushroom spores), myxomycetes, plant pathogens such as ascospores, rusts and smuts, and a mix of saprophytic genera with no particular spore type predominating. Distribution of spore types seen mirrors that usually seen outdoors.

† Quantities of molds seen growing are listed in the MOLD GROWTH column and are graded <1+ to 4+, with 4+ denoting the highest numbers.

^{††} Some comments may refer to the following: Most surfaces collect a mix of spores which are normally present in the outdoor environment. At times it is possible to note a skewing of the distribution of spore types, and also to note "marker" genera which may indicate indoor mold growth. Marker genera are those spore types which are present normally in very small numbers, but which multiply indoors when conditions are favorable for growth.

 \ddagger A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

The limit of detection is < 1+ when mold growth is detected.

For additional information necessary for the interpretation of the results, all readers are advised to refer to the document "Direct Exam Details Page" which is available on our website at:

www.emlab.com/services/mold-testing/direct-microscopic-exam-qualitative/

CHAIN OF CUSTODY

www.EMLabPK.com

N.	2	-	~	
VEATHER	lone	ight		
Fog	×			
Rain Snow	×			
S	×			

REQUESTED SERVICES (# Boxes)

Wind Clear ×

Cherry Hill, NJ 08003 * (866) 871-1984 E ivior, Phoenix, AZ 85027 * (800) 651-4802 # 130, San Dirgo, CA 92123 * (866) 465-6653 aod, # 130, San Dirgo, CA 92123 * (866) 885-6653 33 aod, # 130, San Dirgo, CA 92123 * (866) 885-6653 33 nmental Inc Address: 33 nmental Inc Address: 33 nmental Inc Address: 33 nmental Inc Address: 33 Numental Inc Address: 33 Numental Inc Address: 33 Numental Inc Address: 33 Numental Inc Address: 33 Address Special Instructions: 5 RMATION ND Next Business Day Rush Address Sample TAT Address Sample TAT Address STD STD	www.EMLabPK.com	.com				-	None x x	×	Non-Culturable	ble		Culturable	łe	F		
N 3802 Christy Ave., Withington, NC 26403 Biologia Roman 3802 Christy Ave., Withington, NC 26403 Biologia Roman 3802 Christy Ave., Withington, NC 26403 Biologia Roman Biologia Roman Christy Ave., Withington, NC 26403 Christian Species Christy Ave., Mithington, NC 26403 Christian Species Christian Species Christian Species Christian Specis Christian	herry Hill, NJ: 1936 Ol heenix, AZ: 1501 West an Bruno, CA: 1150 Ba	ney Avenue, Cherry Hill, NJ 08003 * (8 Knudsen Drive, Phoenix, AZ 85027 * (1 tyhill Drive, #100, San Bruno, CA 94066	66) 871-1 800) 651 * (866)	1984 -4802 888-6653		TEVE LEVE	oderate eavy		Spore Swa Trap Bul		oCassette ter, Bulk,	". Andersi Dust, Soi	en, SAS, Swa I, Contact Pl	b, ate	Other Req	uests
Printionnental Inc. Jadace. 3802 Chritry Ava, "Winnigton, KC 2803 Berl Email regulation Email regulation Email regulation Special Instructions Email regulation Concentration Email regulation Special Instructions Email regulation Concentration Email regulation Special Instructions Email regulation Concent Instruction Email regulation Special Regulation Email Regulation Concent Instruction Email Regulation	an Diego, CA: 5473 Kt	army Villa Road, #130, San Diego, CA 9. CC	ONTACT	INFORMAT	NO							(V	C	
Special interactions: Email regults to: gueta@precision-enviro.com Email regults to: gueta@precision-enviro.com 222-20001-11AQ TD: Sundard (DirAUU) TURN AROUND TME CODIS - (TX) TURN AROUND TME CODIS - (TX) 222-20001-11AQ ED: Sundard (DirAUU) No het Buinnis Dy (Minington, NC No het Buinnis Dy (Sundard (DirAUU) No	Precision		A.	deace.		380	2 Cherry Ave., Wilm	ington, NC 28403				sinsta	393	5	0	
Mutricity Mut	Company: Locusion	Guetta	Sp	ecial Instruct	:suoi	E .	tail results to:	diro com				eð soshu		-scord a		
IntroDuction TURN AROUND TMAE CODES - (TAT) TURN AROUND TMAE CODES - (TAT) 241-22-0001-1(AC) STD : Sandard (DFA/UU) Ruista received after 2pm or on tweeklends, will be unsulted for will be accelerated after 2pm or on a strand for will be accelerated after 2pm or on tweeklend analysis needs. 241-22-0001-1(AC) STD : Sandard (DFA/UU) Ruista received after 2pm or on tweeklend analysis needs. 241-22-0001-1(AC) ND : Nee Buinnes Diy (DFA/UU) ND : Nee Buinnes Diy (DFA/UU) Ruista received after 2pm or on tweeklend analysis needs. Ruista received after 2pm or on tweeklend analysis needs. MM : Writeria (PERALUC) ND : Nee Buinnes Diy (Ruinning OD), NC ND : Nee Buinnes Diy (Ruinning OD), NC Sondard Sondar Buinning (Comu D) : App (Comu D) : App (Com D) : App Descreterrolos Right hallway (Rithhan ST STD 150 Liters GT Sondar Sondar Buinning (Comu D) : App (Com Sup V Buinning Armang Komu D) Descreterrolosen species complex comm Outside ST StD 150 Liters GT Sondar Sondar Buinning (Comu D) : App (Com Sup V Buinning Comu D) : App (Com Sup V Buinnig Comu D) : App (Com Sup V Buinning Comu D) : App (Com Sup V Buinn	910-763-3*	445				n6í	ana@hiaciaini-ai			('dds	('dds		maine		-11/009	
Dell Job # 5241-22-0001-1IAQ STD : Standard (OFAULT) Rushes received after 2pm or on weekends after 2pm or on Rushes received after 2pm or on Part 20001-1IAQ 26:: 712 N 30th St. Wilmington, NC ND : Net Busines Dig (biolity weekends after 2pm or on ND : Net Busines Dig (biolity weekends analysis neeks. ND : Net Busines Dig (biolity weekend analysis neeks. ND : Net Busines Dig (biolity weekend analysis neeks. 28:05 Sampling (OF C) Simpling (OF C) ND : Net Busines Dig (biolity weekend analysis neeks. ND : Net Busines Dig (biolity weekend analysis neeks. ND : Net Busines Dig (biolity weekend analysis neeks. 20:712:01 Simpling (OF C) Simpling (OF C) ND : Net Busines Dig (Biolity weekend analysis neeks. ND : Not Busines Dig (Biolity weekend analysis neeks. 20:712:01 Right Hallwery (Conce ST ST <td>PROJ</td> <td>ECT INFORMATION</td> <td></td> <td></td> <td>TURN</td> <td>AROUND TI</td> <td>IME CODES - (TAT)</td> <td></td> <td></td> <td></td> <td>dsy +</td> <td></td> <td>Buo Ay</td> <td></td> <td>pous</td> <td></td>	PROJ	ECT INFORMATION			TURN	AROUND TI	IME CODES - (TAT)				dsy +		Buo Ay		pous	
Resc 712 N 30th St. Wilmington, NC No. Net Busines 0.y. weekends, will be considered weekends, will be considered brance of search of the search of search of the search of the search of search of the search of search of the search of the search of search of the search of the search o	PEI Job	# 5241-22-0001-11AQ	STD.	Standard (D	EFAULT)		Rushes received	after 2pm or on	partic		OI snu		oads ar	U	am A9	
28405 Sampling. (a) Colorada (c) Sampling. (c) Colorada (c) Sampling. (c) Colorada (c) Colorada (c) Amure In D Descaratron Tage Vart National (c) National	Project Desc. 712 N	J 30th St. Wilmington, NC	_	Vext Business	Day		weekends, wil	I be considered xt business day.	orher		is) ig		real9)	isano2 :		
MM - Modernal Holidity Image Kitchen DESCRIPTION Type Discontent Holidity D DESCRIPTION Type Total Volume/Area NUT D Right hallwary ST STD 150 Liters 66.561.1% RH P P P P D Outside ST STD STD 150 Liters 66.561.1% RH P P P P P P D Outside ST STD STD 150 Liters 66.561.1% RH P	Project Zip Code: 28405	Sampling Date & Time: 06/13/22 11:20		ame Busines	s Day Rush		Please alert u weekend an	s in advance of alysis needs.	- sisylen		nuñ sosì	no⊃ pus	m, E.col iltration	semas.		
EID DESCRIPTION Sample Type Txrt Total Volume/Avea (Noewo) NOTES NOTES 712-01 Kitchen ST ST 5T 65.561.1% RH 712-01 Kitchen ST ST STD 150 Liters 65.561.1% RH			- HW	Weekend/Hc	liday				v de		µng 1	s nist	voliito 7 anie	- Kau		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SAMPLE ID	DESCRIPTION		Sample Type (Below)	TAT (Above)	Total Volum (as applic		NOTES y, Temp, RH, etc.)	T anoq2		sibeM-£	ic mail	Total Co ndmsM	TansuQ		
Right hallway ST ST <td>061322-712-01</td> <td>Kitchen</td> <td></td> <td>ST</td> <td>STD</td> <td>150 Lite</td> <td></td> <td>59.9% RH</td> <td>></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>	061322-712-01	Kitchen		ST	STD	150 Lite		59.9% RH	>					1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	061322-712-02	Right hallway		ST	STD	150 Lité		(61.1% RH	>	-				-		+
Gear right room. HVAC supply flex duct T STD N/A N/A N/A Rear right room. HVAC supply flex duct T STD N/A N/A N/A Rear right room. HVAC supply flex duct T STD N/A N/A N/A Rear right room. HVAC supply flex duct T STD N/A N/A N/A Rear right room. HVAC supply flex duct Rear right Rear right Rear right Rear right Rear right room. HVAC supply flex duct Rear right Rear right Rear right Rear right SAMPLE TYPE CODES SW - Swab W. Water Rear right Rear right Rear right ST - Spore Trap: SW - Swab W. Water 06/15/22 V M/A ST - Spore Trap: SW - Swab W. Water 06/15/22 V M/A	061322-712-03	Outside		ST	STD	150 Lite		(72.9% RH		-		-		1		+
SAMPLE TYPE CODES SAMPLE TYPE CODES RELINQUISHED BY DATE & TIME SAMPLE TYPE CODES CP - Contact Plate T - Tape D - Dust CP - Contact Plate T - Tape D - Dust Reggie Romero DATE & TIME ST - Spore Trap: SW - Swab W - Water D - Dust DATE & TIME ST - Spore Trap: SW - Swab W - Water D - Dust DATE & TIME B - Bulk SO - Soil D - Soil D - Dust D - Dust	061322-712-04	Rear right room. HVAC supply f	flex duct	F	STD	//N	7	V/V	>							
SAMPLE TYPE CODES RELINQUISHED BY DATE & TIME RECEIVED BY DATE & TIME CP - Contact Plate T - Tape D - Dust Reggie Romero 06/15/22 V U/IU/A ST - Spore Trap: SW - Swab W - Water D - Dust D6/15/22 V U/IU/A Definion, Allergenco, Burkard B - Bulk SO - Soil D - Soil D - Soil D - Soil															ATE & T	and and
CP - Contact Plate T - Tape D - Dust Reggie Romero 06/15/22 V/ U//U//Le//Le//Le//Le//Le//Le//Le//Le//Le		SAMPLE TYPE CODES				RELING	QUISHED BY	DATE & TIME		× .	ECEIVEL	BY		-	The La	2
ST - Spore Trap: SW - Swab Zefon, Allergenco, Burkard B - Bulk	BC - BioCassette	e		0 - Dust	Reg	gie Romero	Pake	06/15/22		1	-			Z	10/1	5
	A1S - Andersen	ST - Spore Trap: Zefon, Allergenco, Burkard		W - Water 60 - Soil												

By submitting this Chain of Custody, you agree to be bound by the terms and conditions set forth at www.emlabpk.com/terms.html Copyright © 2002-2007 EMLab P&K

O - Other:

Duc. # 200176 Rev: 22 Revised: 9/17/07 Page 1 of 1, Pres.

AIHA Laboratory Accreditation Programs, LLC acknowledges that **Eurofins EMLab P&K** 3929 Old Lee Highway, Unit 91 C, Fairfax, VA 22030 Laboratory ID: LAP-179623

along with all premises from which key activities are performed, as listed above, has fulfilled the requirements of the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC accreditation to the ISO/IEC 17025:2017 international standard, General Requirements for the Competence of Testing and Calibration Laboratories in the following:

LABORATORY ACCREDITATION PROGRAMS

	INDUSTRIAL HYGIENE	Accreditation Expires:
	ENVIRONMENTAL LEAD	Accreditation Expires:
\checkmark	ENVIRONMENTAL MICROBIOLOGY	Accreditation Expires: January 01, 2023
	FOOD	Accreditation Expires:
	UNIQUE SCOPES	Accreditation Expires:

Specific Field(s) of Testing (FoT)/Method(s) within each Accreditation Program for which the above named laboratory maintains accreditation is outlined on the attached Scope of Accreditation. Continued accreditation is contingent upon successful on-going compliance with ISO/IEC 17025:2017 and AIHA-LAP, LLC requirements. This certificate is not valid without the attached Scope of Accreditation. Please review the AIHA-LAP, LLC website (www.aihaaccreditedlabs.org) for the most current Scope.

Cheryl J. Marton

Cheryl O Morton Managing Director, AIHA Laboratory Accreditation Programs, LLC

Date Issued: 12/31/2020

Revision19: 09/01/2020

AIHA Laboratory Accreditation Programs, LLC SCOPE OF ACCREDITATION

Eurofins EMLab P&K

Laboratory ID: LAP-179623

Issue Date: 12/31/2020

3929 Old Lee Highway, Unit 91 C, Fairfax, VA 22030

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Environmental Microbiology Laboratory Accreditation Program (EMLAP)

EMLAP Scope Category	Field of Testing (FOT)	Component, parameter or characteristic tested	Method	Method Description (for internal methods only)
Fungal	Air - Culturable	Viable Impaction Samples	EM-MY-S-1043	Preparation and Analysis of Air Samples for Culturable Fungi
Fungal	Air - Direct Examination	Spore Trap Air Samples	EM-MY-S-1038	Preparation and Analysis of Spore Trap (Air) Samples for Fungal Spores, Other Biological and Non- Biological Particles
Fungal	Bulk - Culturable	Dust, Swab, Bulk, Water/Liquids, Wipes	EM-MY-S-1040	Preparation of Bulk, Dust/ Soil, Swab/Wipe and Water/Liquid Samples for Quantitative Fungal and /or Bacterial Analysis
Fungal	Bulk - Culturable	Dust, Swab, Bulk, Water/Liquids, Wipes, Contact Plates	EM-MY-S-2584	Analysis of Dust, Swab, Water, and Bulk Samples for Culturable Fungi
Fungal	Bulk - Direct Examination	Tape, Swab, Wipe, Bulk, Dust, Soil	EM-MY-S-1039	Preparation and Analysis of Tape, Swab, Wipe, Bulk and Dust - Soil Samples for Qualitative Direct Microscopic Examination
Fungal	Bulk - Direct Examination	Tape, Swab, Wipe, Bulk, Dust, Soil	EM-MY-S-1041	Preparation and Analysis of Tape, Swab, Wipe, Bulk and Dust - Soil Samples for Quantitative Direct Microscopic Examination
Fungal	Surface - Culturable	Dust, Swab, Bulk, Water/Liquids, Wipes	EM-MY-S-1040	Preparation of Bulk, Dust/ Soil, Swab/Wipe and Water/Liquid Samples for Quantitative Fungal and /or Bacterial Analysis
Fungal	Surface - Culturable	Dust, Swab, Bulk, Water/Liquids, Wipes, Contact Plates	EM-MY-S-2584	Analysis of Dust, Swab, Water, and Bulk Samples for Culturable Fungi

Initial Accreditation Date: 12/01/2005

EMLAP Scope Category	Field of Testing (FOT)	Component, parameter or characteristic tested	Method	Method Description (for internal methods only)
Fungal	Surface - Direct Examination	Tape, Swab, Wipe, Bulk, Dust, Soil	EM-MY-S-1039	Preparation and Analysis of Tape, Swab, Wipe, Bulk and Dust - Soil Samples for Qualitative Direct Microscopic Examination
Fungal	Surface - Direct Examination	Tape, Swab, Wipe, Bulk, Dust, Soil	EM-MY-S-1041	Preparation and Analysis of Tape, Swab, Wipe, Bulk and Dust - Soil Samples for Quantitative Direct Microscopic Examination

A complete listing of currently accredited EMLAP laboratories is available on the AIHA-LAP, LLC website at: <u>http://</u> www.aihaaccreditedlabs.org

Wilmington Housing Authority Wilmington Housing Authority 1524 S 16th St Wilmington, NC 28401

【 (910) 660-9080Smoon@wha.net

INVOICE	#14457
SERVICE DATE	Aug 12, 2022
INVOICE DATE	Oct 10, 2022
DUE	Upon receipt

AMOUNT DUE

\$0.00

SERVICE ADDRESS

712 N 30th St Wilmington, NC 28405

CONTACT US

5208 Carolina Beach Rd, 100 Wilmington, NC 28412

(910) 791-7888jreinholt@advancedairsolutions.org

Service completed by: Matthew Pleasant, John Sweeley

INVOICE

Services	qty	unit price	amount
Duct Cleaning - Air Ducts	1.0	\$0.00	\$0.00
Central heating and air conditioning systems transfer air throughout y ducts.	our hou	ise via air	

Debris can build up in your ducts that needs to be removed to ensure proper operation. Cleaning includes the use of a brush in each register and air duct.

φ0.00
\$0.00
\$0.00
\$0.00

Thank you for choosing Advanced Air Solutions for your Indoor Air Quality needs.

712 N. 30th Street Wilmington, NC 28405 Page 1 of 2

December 21, 2021

Monique Washington Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-21-405A-IAQ-M – 712 N. 30th Street, Wilmington, NC - Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on December 10, 2021. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling following cleaning of surface mold growth by Wilmington Housing Authority's maintenance department.

Background Information: PEC conducted an investigation on November 15th, 2021, identifying suspect visible mold growth; however, no fungal growth was identified from surface samples.

The HVAC system was operating in the cool mode, set at 73° F upon PEC's arrival and during sampling.

Related Documents:

• PEC initial investigation report dated November 17, 2021

Note: For directional purposes "front" is determined by facing N. 30th Street from inside the unit, unless otherwise stated.

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen/living room, the bathroom, the front bedroom, and the rear bedroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.*

Results identified elevated airborne levels of *Cladosporium* within the kitchen/living room.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the unit ranged from 52.2% – 58.6% with an outdoor reading of 78.1% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%.

Conclusions: Sample results identified slightly elevated airborne mold spore levels (880 spores/m,³ of *Cladosporium*) within the kitchen/living room. Based on *Cladosporium* levels outdoors (i.e., 600 and 720 spores/m³) during this investigation, coupled with the initial investigation (i.e., acceptable airborne mold spore levels and no surface mold growth identified) no further actions are recommended at this time. However, if conditions change (i.e., additional suspect visible mold growth, tenant complaints, etc.), PEC recommends additional investigative activities (i.e., air sampling at a minimum).

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Velei Bum

Philip Green IH Technician

Enclosures

Jour An

Tommie Green, CIEC Professional Industrial Hygienist

5	Phoenix EnviroCorp	
11	4025 SHIPYARD BLVD. WILMINGTON, NC 29403	C

CHAIN OF CUSTODY

EnviroCorp	LABORATORY	TEST REQUEST			
WILMINGTON, NC 28403 R-C	1#1,211214033	1		D'. 0°	79-1
NTACT: Philip Green	TELEPHONE (910) 397-0370 FAX (910) 313-6094		12/10/2021		
C Job #: 21-21-405A-IAQ-M	SITE ADDRESS: 712 N. 30th Street,	Wilmington, NC 284	405		
EASE EMAIL RESULTS TO: KM	GREEN@PHOENIXENVIROCORP.COM NUMBER OF SAMPLES: TURN AROUND TIM	E SPECIEIED.			
MPLE TYPE: Spore Trap - Micro-5	6Immediate	24 hr 48 h	irX Standard		
Surface Samples	0		L to the Annalysis I		Transmission 1
Sample #	Sample Area	Sample Volume	Lab Analysis Requested	% Relative Humidity	Temperature *F
121021-PG-201	Kitchen/Living Room	25L	S001	58.6	72.9
121021-PG-202	Bathroom	25L	S001	52.2	74.1
121021-PG-203	Front Bedroom	25L	S001	56.3	72.1
121021-PG-204	Rear Bedroom	25L	S001	57.2	74.0
121021-PG-205	Outside - Right	25L	5001	78.1	70.1
121021-PG-206	Outside - Left	25L	S001		
		1.1			
	4 ¹				
	5. 3				
	2				

Samples Collected By (Printed Name and Signature):

Date Signed: 12/10/2021

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
12/10/2021	16:00	Intact	AFFILIATION:	AFFILIATION:
				(2) [2-147

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Healthy Home Mold Inspection** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Angel Gosnell

Date: 12/14/21

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

Spore Trap Report

			Opor	e Trap Re		<u> </u>	10/10/01		
Attn: Phoenix Enviro Corp. Date Sampled: 12/10/21 Date Received: 12/14/21									
Attn: Phoenix Env									
4020 Shipyard Blvd.						Analyzed:			
Wilmington, NC 28403 Date Reported							12/14/21		
						e Revised:			
	21-21-405/								
							712 N. 30t		
					Project City,				
					SEEML Ref	erence # :	211214033	3	
TEST METHOD: DIRECT M								04004 50 000	
Client Sample ID	1	21021-PG-20	1	1	21021-PG-20)2		121021-PG-203	
Location	Kite	chen/Living Ro	om		Bathroom			Front Bedroom	
Lab Sample ID	2	11214033-09	9	2	11214033-10	00		211214033-101	
Comments									
Hyphal Fragments									
Pollen									
Spore Trap Used		M5			M5			M5	
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%
Alternaria									
Ascospores				2	80	13			
Basidiospores				2	80	13	8	320	62
Bipolaris/Drechslera									
Chaetomium					1				
Cladosporium	22	880	96	12	480	75			
Curvularia					1				
Epicoccum									
Cercospora					1				
Fusarium									
Memnoniella									
Nigrospora									
Penicillium/Aspergillus	1	40	4				5	200	38
Polythrincium									
Rusts									
Smuts/Periconia/Myxomy									
Spegazzinia									
Stachybotrys									
Stemphylium									
Tetraploa									
Torula									
Ulocladium									
Colorless/Other Brown*									
Oidium									
Zygomycetes									
Pithomyces									
Background debris (1-5)**	3			3			3		
Sample Volume(liters)	25			25			25		
TOTAL SPORES/M ³	23	920		16	640		13	520	
Revisions:									

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

 $\label{eq:Disclaimer} \textbf{Disclaimer}: The sample results are determined by the sample volume, which is provided by the customer.$

This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory 102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Texas Lic: LAB1016

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20

Spore Trap Report

			•	е пар ке	•	e Sampled	: 12/10/21			
Attn: Phoenix Enviro Corp.					Date Received: 12/14/21					
4020 Shipyard Blvd.					Date Analyzed: 12/14/21					
Wilmington, NC 28403					Date Reported: 12/14/21					
5, , ,	Date Revised:									
					Project Name: 21-21-405A-IAQ-M					
							: 712 N. 30t			
					Project City,					
							211214033			
TEST METHOD: DIRECT M	MICROSCO	OPY EXAMIN	ATION SE	EML SOP				-		
Client Sample ID		21021-PG-20		T	21021-PG-2	05	-	121021-PG-206	5	
Location		Rear Bedroom			Outside-Righ			Outside-Left		
					-					
Lab Sample ID	2	11214033-10)2	2	11214033-1	03	-	211214033-104		
Comments				L	1		<u> </u>			
Hyphal Fragments		┥───┤		L			1	40		
Pollen Spara Trap Llaad								NAC NAC		
Spore Trap Used		M5	<i></i>		M5	<u>c</u> (M5	~ /	
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	
Alternaria	4	10								
Ascospores	1	40	14							
Basidiospores	1	40	14	8	320	32	5	200	22	
Bipolaris/Drechslera										
Chaetomium										
Cladosporium	1	40	14	15	600	60	18	720	78	
Curvularia										
Epicoccum				1	40	4				
Cercospora										
Fusarium										
Memnoniella										
Nigrospora	_									
Penicillium/Aspergillus	2	80	29	1	40	4				
Polythrincium										
Rusts	-									
Smuts/Periconia/Myxomy	2	80	29							
Spegazzinia										
Stachybotrys										
Stemphylium										
Tetraploa										
Torula										
Ulocladium										
Colorless/Other Brown*										
Oidium										
Zygomycetes										
Pithomyces										
Background debris (1-5)**	3			3			3			
Sample Volume(liters)	25			25			25			
TOTAL SPORES/M ³	7	280		25	1000		23	920		

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the

The analytical sensitivity is the spores/m[°] divided by the raw count, expressed in spores/m[°]. The limit of detection is the analytical sensitivity (in spores/m[°]) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer. This report relates only to the samples tested as they were received.

Angel Gosnell Angel Gosnell, Approved Laboratory Signatory

AIHA-LAP, LLC EMLAP #173667

Phone: (864) 233-3770 Texas Lic: LAB1016

102 Edinburgh Court

Greenville, SC. 29607

Form 18.0 Rev 09 07/30/20

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.

The following table lists mycotoxins that are produced by certain types of fungi:

Fungi	Mycotoxin
Acremonium crotocinigenum	Crotocin
Aspergillus favus	Alfatoxin B, cyclopiazonic acid
Aspergillus fumigatus	Fumagilin, gliotoxin
Aspergillus carneus	Critrinin
Aspergillus clavatus	Cytochalasin, patulin
Aspergillus Parasiticus	Alfatoxin B
Aspergillus nomius	Alfatoxin B
Aspergillus niger	Ochratoxin A, malformin, oxalicacid
Acremonium crotocinigenum	Crotocin
Aspergillus nidulans	Sterigmatocystin
Aspergillus ochraceus	Ochratoxin A, penicillic acid
Aspergillus versicolor	Sterigmatocystin, 5 ethoxysterigmatocystin
	Ausdiol, austamide,
Aspergillus ustus	austocystin, brevianamide
Aspergillus terreus	Citreoviridin
	Alternariol, altertoxin, altenuene, altenusin,
Alternaria	tenuazonic acid
Arthrinium	Nitropropionic acid
D. 1 .	Cytochalasin, sporidesmin,
Bioploaris	sterigmatocystin
Chaetomium	Chaetoglobosin A,B,C. Sterigmatocystin
Cladosporium	Cladosporic acid
Clavipes purpurea	Ergotism
Cylindrocorpon	Trichothecene
Diplodia	Diplodiatoxin
Fusarium	Trichothecene, zearalenone
Fusarium moniliforme	Fumonisins
Emericella nidulans	Sterigmatocystin
Gliocladium	Gliotoxin
	Griseofulvin, dechlorogriseofulvin, epi-
Memnoniella	decholorgriseofulvin, trichodermin,
	trichodermol
Myrothecium	Trichothecene
Paecilomyces	Patulin, viriditoxin
Penicillium aurantiocandidum	Penicillic acid
Penicillium aurantiogriseum	Penicillic acid
Penicillium brasilanum	Penicillic acid
Penicillium brevicompactum	Mycophenolic acid
Penicillium camemberti	Cyclopiazonic acid
Penicillium carneum	Mycophenolic acid, Roquefortine C
Penicillium crateriforme	Rubratoxin

Fungi	Mycotoxin
Penicillium citrinum	Citrinin
Penicillium commune	Cyclopiazonic acid
Penicillium crustosum	Roquefortine C
Penicillium chrysogenum	Roquefortine C
Penicillium discolor	Chaetoglobosin C
Penicillium expansum	Citrinin, Roquefortine C
Penicillium griseofulvum	Roquefortine C, cyclopiazonic acid, griseofulvin
Penicillium hirsutum	Roquefortine C
Penicillium hordei	Roquefortine C
Penicillium nordicum	Ochratoxin A
Penicillium paneum	Roquefortine C
Penicillium palitans	Cyclopiazonic acid
Penicillium polonicum	Penicillic acid
Penicillum roqueforti	Roquefortine C, Mycophenolic acid
Penicillium veridicatum	Penicillic acid
Penicillium verrucosum	Citrinin, ochratoxin A
Penicillium/ Aspergillus	Patulin
Penicillium/ Aspergillus/Alternaria	Glitoxin
Phomopsis	Macrocyclic trichothecenes
Phoma	Brefeldin, cytochalasin, secalonic acid, tenuazonic acid
Pithomyces	Sporidesmin
Rhizoctonia	Slaframine
Rhizopus	Rhizonin
Sclerotinia	Furanocoumarins
Stachybotrys chartarum	Iso-satratoxin F, roridin E, L-2, satratoxin G & H, trichodermin, trichodermol, trichothecene
Torula	Cytotoxins
Trichoderma	Trichodermin, trichodermol, gliotoxin
Trichothecium	Trichothecene
Wallemia	Walleminol
Zygosporium	Cytochalasin

General terms

Allergen

An allergen is a substance that elicits an IgE antibody response and is responsible for producing allergic reactions. Chemicals are released when IgE on certain cells contact an allergen. These chemicals can cause injury to surrounding tissue - the visible signs of an allergy. Only a few fungal allergens have been characterized but all fungi are thought to be potentially allergenic. Fungal allergens are proteins found in either the mycelium or spores

"Black mold"

A poorly defined term. Black mold or toxic black mold has usually been associated with the mold *Stachybotrys chartarum*. While there are only a few molds that are truly black, there are many that can appear black. Not all molds that appear to be black are *Stachybotrys*.

Fungi

Fungi are neither animals nor plants and are classified in a kingdom of their own. The Kingdom of Fungi. Fungi include a very large group of organisms, including molds, yeasts, mushrooms and puffballs. There are >100,000 accepted fungal species but current estimates range to 1.5 million species. Mycologists (people who study fungi) have grouped fungi into four large groups according to their method of reproduction.

Hidden mold

This refers to visible mold growth on building structures that is not easily seen, including the areas above drop ceilings, within a wall cavity (the space between the inner and outer structure of a wall), inside air handlers, or within the ducting of a heating/ventilation system.

Microbial Volatile Organic Compounds (MVOCs)

Fungi produce chemicals as a result of their metabolism. Some of these chemicals, MVOCs, are responsible for the characteristic moldy, musty, or earthy smell of fungi, whether mushrooms or molds. Some MVOCs are considered offensive or annoying. Specific MVOCs are thought to be characteristic of wood rot and mold growth on building materials. The human nose is very sensitive to mold odors and sometimes more so than current analytical instruments.

Molds are a group of organisms that belong to the Kingdom of Fungi (see Fungi). Even though the terms mold and fungi had been commonly referred to interchangeably, all molds are fungi, but not all fungi are molds.

Mycotoxin

Mycotoxins are compounds produced by some fungi that are toxic to humans or animals. By convention, the term? Mycotoxin. Excludes mushroom toxins. Fungi that produce mycotoxins are called "toxigenic fungi."

Spore

General term for a reproductive structure in fungi, bacteria and some plants. In fungi, the spore is the structure which may be used for dissemination and may be resistant to adverse environmental conditions.

Toxic mold

The term "toxic mold" has no scientific meaning since the mold itself is not toxic. The metabolic byproducts of some molds may be toxic (see mycotoxin).

Hypha (plural, hyphae)

An individual fungal thread or filament of connected cells; the thread that represents the individual parts of the fungal body.

809 N. 30th Street Wilmington, NC 28405 Page 1 of 2

May 9, 2022

James Hayes Wilmington Housing Authority 1524 S. 16th Street Wilmington, NC 28401

RE: PEC Job # 21-20-237A-IAQ-M – 809 N. 30th Street, Wilmington, NC - Mold Investigation/Background air sampling

Enclosed are the results of the mold investigation conducted at the above referenced unit on April 29, 2022. Phoenix EnviroCorp (PEC) was retained to conduct background air sampling to determine airborne mold spore levels and to collect surface samples of suspect visible mold growth.

Background Information: This is a two-story apartment building built on a slab. The subject unit is fully furnished with contents throughout, and no carpet installed within.

The first floor HVAC system was operating in the cool mode with the fan on auto set at 68° F, and the second floor HVAC system was operating in the cool mode with the fan on auto set at 69° F upon PEC's arrival and during sampling.

Note: For directional purposes, "front" is determined by facing N. 30th Street from inside the unit, unless otherwise stated.

Visual Inspection: PEC's visual inspection noted the following:

- Excessive contents in closets in various locations throughout the unit obstructing the visual inspection
- No suspect visible mold growth observed

Mold Testing – **Air:** Non-viable spore trap air samples were collected to determine airborne mold spore levels. Samples were collected within the kitchen, the living room, the bathroom, the 1st floor bedroom, the 2nd floor front right bedroom, the 2nd floor rear left bedroom, and the 2nd floor bathroom. *Micro 5 sampling media was utilized for the collection of spore trap air samples. Each sample ran for five (5) minutes at a flow rate of five (5) liters per minute for a total volume of twenty-five (25) liters per sample. Each sample was assigned a unique ID number and shipped to a third-party laboratory for analysis. All air samples were collected from centralized locations (within their respective areas) and within the breathing zone, unless otherwise noted. Two samples were also collected outdoors for comparative purposes.*

Results indicated acceptable levels of airborne mold spores in all sampled locations.

The interpretation of air sample results is based on indoor/outdoor comparisons, in combination with a study by Daniel M. Baxter, entitled "A Regional Comparison of Mold Spore Concentrations Outdoors and Inside "Clean" and "Mold Contaminated" Southern California Buildings", and other industry guidelines, as well as over 20 years of experience in industrial hygiene and mold testing.

In layman terms, acceptable levels indicate that the levels are below the outdoor level and/or the baseline levels (whichever is higher) stated below. Elevated levels indicate that the levels are above the outdoor level and/or the baseline level.

Baseline levels for indoor spore trap air samples are as follows: < 900 spores/m³ for Penicillium/Aspergillus; 0 spores/m³ for Stachybotrys and Chaetomium; and < 350 spores/m³ for other individual mold groups.

Relative Humidity (RH): *Temperature and relative humidity readings were collected in the same locations as the spore trap air samples.* RH levels within the unit ranged from 46.2% - 48.6% with an outdoor RH level of 50.5% (see the enclosed Chain of Custody for details). Per the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62-1999, relative humidity should range between 30% and 60%.

Conclusions: Air sampling within the tested areas did not indicate a problem with the indoor air quality regarding mold and there was no suspect visible mold growth or apparent water damage observed.

Enclosed in this report are the laboratory analysis and the Chain of Custody.

Should you have any questions, please do not hesitate to call.

Thank you,

Leon J Hay III

Leon J. Henry, III IH Technician

Tomm hu

Tommie Green, CIEC Professional Industrial Hygienist

Enclosures

CHAIN OF CUSTODY

LABORATORY TEST REQUEST

809 N. 30th St, Wilr CORP.COM PLES: TURN AROUND TIM Immediate O Sample Area Sitchen Ing Room athroom edroom Bedroom 2nd Floor Bedroom 2nd Floor		_XStandard Lab Analysis Requested S001 S001 S001 S001 S001	% Relative Humidity 46.2 48.2 48.2 48.2 47.7	Temperature F 69.6 68.7 68.6 68.7
CLES: TURN AROUND TIM Immediate Sample Area Sitchen ng Room athroom edroom 2nd Floor	24 hr48 hr Sample Volume 25L 25L 25L 25L 25L 25L	Lab Analysis Requested S001 S001 S001 S001	% Relative Humidity 46.2 48.2 48.2 48.2 47.7	69.6 68.7 68.6
Area Sitchen ng Room athroom edroom Bedroom 2nd Floor	Volume 25L 25L 25L 25L 25L 25L	Requested S001 S001 S001 S001	Humidity 46.2 48.2 48.2 48.2 47.7	-F 69.6 68.7 68.6
ng Room athroom edroom Bedroom 2nd Floor	25L 25L 25L 25L	5001 5001 5001	48.2 48.2 47.7	68.7 68.6
athroom edroom Bedroom 2nd Floor	25L 25L 25L	S001 S001	48.2 47.7	68.6
edroom 3edroom 2nd Floor	25L 25L	S001	47.7	
Bedroom 2nd Floor	25L			68.7
		S001		
edroom 2nd Floor	251		46.9	70.2
	Kand ha	S001	46.8	69.5
edroom 2nd Floor	25L	S001	46.7	68.6
oor Bathroom	25L	S001	48.6	70.0
side Front	25L	S001	50.5	74.0
side Rear	25L	S001	N/A	N/A
re acceptabl	le			
	re acceptab	re acceptable	re acceptable	Len J My III Date Signed: 4/29/2022

CHAIN OF CUSTODY RECORD

DATE:	Time:	Condition of Samples:	RELINQUISHED BY: (Printed Name and Signature)	ACCEPTED BY: (Printed Name and Signature)
4/29/2022	18:00	Intact	AFFILIATION: Leon J Hung III	AFFILIATION: 5-3-22

Southeast Environmental Microbiology Laboratories

102 Edinburgh Court Greenville, SC 29607 Phone: (864) 233-3770 FAX: (864) 233-6589

The information and data for **Phoenix Enviro Corp.** has been checked for thoroughness and accuracy. The following reports are contained within this document:

Surface/Bulk Report Spore Trap Report

Andersen Fungal Report Quantitative Fungal Report

Lab Manager Review:

Blake Robinson

Date: 05/03/22

Thank you for using SEEML laboratories. We strive to provide superior quality and service. SEEML laboratories are accredited through AIHA-LAP, LLC (EMLAP # 173667) for the analysis of Spore Traps and Surface/Bulk Samples.

The data within this report is reliable to three significant figures. The third significant figure is technically unjustified. In this instance, the third figure is reported as an estimate to facilitate the interpretation by the customer.

Confidentiality Notice:

The document(s) contained herein are confidential and privileged information, intended for the exclusive use of the individual or entity named above. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of the document(s) is strictly prohibited. If you have received this document in error, please immediately notify us by telephone to arrange for its return. Thank you.

Guidelines for Interpretation:

No accepted quantitative regulatory standards currently exist by which to assess the health risks related to mold and bacterial exposure. Molds and bacteria have been associated with a variety of health effects and sensitivity varies from person to person.

Several organizations, including: the American Conference of Government Industrial Hygienists (ACGIH); the American Industrial Hygiene Association (AIHA); the Indoor Air Quality Association (IAQA); the United States Environmental Protection Agency (USEPA); the Centers for Disease Control (CDC), as well as the California Department of Health Services (CADHS), have all published guidelines for assessment and interpretation of mold resulting from water intrusion in buildings.

Interpretation of the data and information within this document is left to the company, consultant, and/or persons who conducted the fieldwork.

			Opor	е парке	•	Sampled	04/20/22				
Attn: Phoenix Env	Date Sampled: 04/29/22 Date Received: 05/03/22										
4020 Shipyard Bl				Date Analyzed: 05/03/22							
Wilmington, NC 2				Date Reported: 05/03/22							
	20403			Date Reported: 05/03/22 Date Revised:							
				a. e: 21-20-237A-IAQ-M							
				809 N. 30tl							
							P: Wilmington, NC 28405				
TEST METHOD: DIRECT N						elence # .	220505047	·			
Client Sample ID		42922-LH-0		-	/)42922-LH-0;	2		042922-LH-03			
•			1			2					
Location		Kitchen			Living Room			Bathroom			
Lab Sample ID	22	20503047-14	7	2	20503047-14	8	2	220503047-149)		
Comments											
Hyphal Fragments	1	40					3	120			
Pollen				1	40						
Spore Trap Used		M5			M5			M5			
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%		
Alternaria				1	40	6	1	40	6		
Ascospores							3	120	18		
Basidiospores	1	40	25	2	80	13					
Bipolaris/Drechslera											
Chaetomium		1 1									
Cladosporium	2	80	50	4	160	25	11	440	65		
Curvularia		1 1									
Epicoccum		1									
Cercospora		1 1									
Fusarium		1									
Memnoniella											
Nigrospora		1									
Penicillium/Aspergillus	1	40	25	9	360	56	1	40	6		
Polythrincium							1	40	6		
Rusts											
Smuts/Periconia/Myxomy											
Spegazzinia											
Stachybotrys											
Stemphylium											
Tetraploa											
Torula		1			1						
Ulocladium											
Colorless/Other Brown*											
Oidium											
Zygomycetes											
Pithomyces											
Background debris (1-5)**	3			3			3				
Sample Volume(liters)	25			25			25				
TOTAL SPORES/M ³	4	160		16	640		17	680			
Revisions:	-										

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Blake Robinson Approved Laboratory Sig

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

Blake Robinson, Approved Laboratory Signatory

Form 18.0 Rev 09 07/30/20

AIHA-LAP, LLC EMLAP #173667

					- Date	Sampled:	04/29/22				
Attn: Phoenix Env			Received:								
4020 Shipyard Bl				Date Analyzed: 05/03/22							
Wilmington, NC 2				Date Reported: 05/03/22							
				Date Revised:							
		A-IAQ-M									
	Project Address: 809 N. 30th St.										
					Project City, S	State, ZIP:	Wilmingtor	n, NC 28405			
					SEEML Ref						
TEST METHOD: DIRECT M	IICROSCO	DPY EXAMIN	ATION SE	EML SOP	7						
Client Sample ID	()42922-LH-04	4		042922-LH-0	5		042922-LH-06			
Location		Bedroom			ght Bedroom 2			ight Bedroom 2nd	d Floor		
Lab Sample ID	2	20503047-15	50	2	20503047-15	1		220503047-152			
Comments	2	2000047-10		2	20000047-10	· I		-20000047-102			
Hyphal Fragments											
Pollen		┼───┤									
Spore Trap Used		M5			M5			M5			
	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%		
Alternaria	Taw CL	300163/111	/0	1aw Ul.	300163/111	/0	1 1 1	40	10		
Ascospores	1	40	25				· ·	40	10		
Basidiospores		40	20	3	120	25	1	40	10		
Bipolaris/Drechslera				3	120	20	1	40	10		
Chaetomium											
Cladosporium	2	80	50	4	160	33	1	40	10		
Curvularia	2	00	50	4	100	33	1	40	10		
Epicoccum							· ·	40	10		
Cercospora				1							
Fusarium											
Memnoniella				1							
Nigrospora											
Penicillium/Aspergillus	1	40	25	5	200	42	6	240	60		
Polythrincium	<u> </u>	40	20	5	200	42	0	240	00		
Rusts											
Smuts/Periconia/Myxomy											
Spegazzinia											
Stachybotrys											
Stemphylium											
Tetraploa											
Torula											
Ulocladium											
Colorless/Other Brown*											
Oidium											
Zygomycetes											
Pithomyces											
Background debris (1-5)**	3			3			3				
Sample Volume(liters)	25			25			25				
TOTAL SPORES/M ³	4	460			400		10	400			
Revisions:	4	160		12	480		10	400			

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Blake Robinson Approved Laboratory Sig

Blake Robinson, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

			Shore	e Trap Re							
Date Sampled: 04/29/22											
Attn: Phoenix Env				Date Received: 05/03/22							
4020 Shipyard Bl	vd.			Date Analyzed: 05/03/22							
Wilmington, NC 2	28403			Date Reported: 05/03/22							
				Date Revised:							
		21-20-237A-IAQ-M									
					Projec	t Address:	809 N. 30t	h St.			
					Project City,						
					SEEML Ref						
TEST METHOD: DIRECT M	/ICROSCO	DPY EXAMIN	IATION SE	EML SOP	7						
Client Sample ID	()42922-LH-0	7	(042922-LH-08	8		042922-LH-09			
·											
Location	Rear Le	eft Bedroom 2r	nd Floor	2n	d Floor Bathro	om		Outside Front			
Lab Sample ID	2	20503047-15	53	2	20503047-15	54	2	220503047-155	5		
Comments							1				
Hyphal Fragments	2	80		1	40		10	400			
Pollen		-					2	80			
Spore Trap Used		M5			M5			M5			
· · ·	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%	raw ct.	spores/m ³	%		
Alternaria	1	40	11	2	80	11	8	320	8		
Ascospores	1	40	11		00		2	80	2		
Basidiospores	I	+0		1	40	5	1	40	<1		
Bipolaris/Drechslera				1	40	5	1	40	<1		
Chaetomium		-		1	40	5	1	40			
-	2	80	22	12	480	63	72	2880	71		
Cladosporium Curvularia	2	40	11	12	400	03	12	2000	/		
	I	40					F	200	F		
Epicoccum							5	200	5		
Cercospora											
Fusarium				-							
Memnoniella								-			
Nigrospora		400			400	10					
Penicillium/Aspergillus	3	120	33	3	120	16			•		
Polythrincium							2	80	2		
Rusts							6	240	6		
Smuts/Periconia/Myxomy							3	120	3		
Spegazzinia											
Stachybotrys											
Stemphylium											
Tetraploa							1	40	<1		
Torula											
Ulocladium											
Colorless/Other Brown*											
Oidium	1	40	11								
Zygomycetes							1	40	<1		
Pithomyces											
Background debris (1-5)**	3			3			3				
Sample Volume(liters)	25			25			25				
TOTAL SPORES/M ³	9	360		19	760		102	4080			

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2 = Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Greenville, SC. 29607 Phone: (864) 233-3770

Blake Robinson, Approved Laboratory Signatory

Blake Robinson

AIHA-LAP, LLC EMLAP #173667 Form 18.0 Rev 09 07/30/20 Phone: (864) 233-3770 Texas Lic: LAB1016

102 Edinburgh Court

			Shore	е ггар кер						
						Sampled:				
Attn: Phoenix Env				Date Received: 05/03/22						
4020 Shipyard B				Date Analyzed: 05/03/22						
Wilmington, NC 2	28403			Date Reported: 05/03/22						
						Revised:				
							21-20-237/			
							809 N. 30t			
			n, NC 28405							
					SEEML Refe	erence # :	220503047	7		
TEST METHOD: DIRECT				EML SOP 7						
Client Sample ID	C	42922-LH-10	0							
Location		Outside Rear								
Lab Sample ID	2	20503047-15	i6							
Comments										
Hyphal Fragments	12	480		Í Í						
Pollen	5	200								
Spore Trap Used		M5						-	-	
	raw ct.	spores/m ³	%							
Alternaria	9	360	5							
Ascospores	2	80	1							
Basidiospores	3	120	2							
Bipolaris/Drechslera	1	40	<1							
Chaetomium										
Cladosporium	140	5600	85							
Curvularia										
Epicoccum										
Cercospora				1						
Fusarium										
Memnoniella				1						
Nigrospora										
Penicillium/Aspergillus										
Polythrincium										
Rusts	7	280	4							
Smuts/Periconia/Myxomy	2	80	1							
Spegazzinia										
Stachybotrys										
Stemphylium										
Tetraploa										
Torula										
Ulocladium										
Colorless/Other Brown*										
Oidium										
Zygomycetes										
Pithomyces										
Background debris (1-5)**	3									
Sample Volume(liters)	25									
TOTAL SPORES/M ³	164	6560								
Revisions:	•	•I			_		•	•		

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore. The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

*Colorless,other Brown are spores without a distinctive morphology on spore traps and non-viable surface samples.

**Background debris is the amount of particulate matter present on the slide and is graded from 1-5 with 1 = very light, 2= Light, 3 = Medium, 4 = Heavy, 5 = Very Heavy. The higher the rating the more likelihood spores may be underestimated. A rating of 5 should be interpreted as minimal counts and may actually be higher than reported.

Disclaimer: The sample results are determined by the sample volume, which is provided by the customer.

This report relates only to the samples tested as they were received.

Blake Robinson

Blake Robinson, Approved Laboratory Signatory

102 Edinburgh Court Greenville, SC. 29607 Phone: (864) 233-3770

AIHA-LAP, LLC EMLAP #173667

Form 18.0 Rev 09 07/30/20

Fungal Descriptions

Alternaria sp.

Aw - 0.89. Conidia dimensions: 18-83 x 7-18 microns. A very common allergen with an IgE mediated response. It is often found in carpets, textiles and on horizontal surfaces in building interiors. Often found on window frames. Outdoors it may be isolated from samples of soil, seeds and plants. It is commonly found in outdoor samples. The large spore size, 20 - 200 microns in length and 7 - 18 microns in sizes, suggests that the spores from these fungi will be deposited in the nose, mouth and upper respiratory tract. It may be related to bakers' asthma. It has been associated with hypersensitivity pneumonitis. The species *Alternaria alternata* can produce tenuazonic acid and other toxic metabolites that may be associated with disease in humans or animals. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Ascospore

A spore borne in a special cell called an ascus. Spores of this type are reported to be allergenic. All ascomycetes, members of a group of fungi called Ascomycotina, have this type of spore. The minute black dots on rotting wood and leaves or the little cups on lichens are examples of ascomycetes; another is the "truffle" mushroom.

Aspergillus/Penicillium

These are two of the most commonly found allergenic fungi in problem buildings. *Aspergillus* comes in many varieties (species). Many of the varieties produce toxic substances. It may be associated with symptoms such as sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. *Penicillium* is a variety of mold that is very common indoors and is found in increased numbers in problem buildings. It also has many varieties, some of which produce toxic substances. The symptoms are allergic reactions, mucous membrane irritation, headaches, vomiting, and diarrhea. Due to the morphological similarity of *Aspergillus* and *Penicillium*, they are not differentiated by microscopic analysis and are reported together.

Aspergillus sp.

Aw 0.75 - 0.82. Reported to be allergenic. Members of this genus are reported to cause ear infections. Many species produce mycotoxins that may be associated with disease in humans and other animals. Toxin production is dependent on the species or a strain within a species and on the food source for the fungus. Some of these toxins have been found to be carcinogenic in animal species. Several toxins are considered potential human carcinogens. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema; may also be associated with sinusitis, allergic bronchopulmonary aspergillosis, and other allergic symptoms. Spore from basidiomycetes. Many varieties are reported to be allergenic.

Bipolaris sp.

A fungus with large spores that could be expected to be deposited in the upper respiratory tract. This fungus can produce the mycotoxin - sterigmatocystin, which has been shown to produce liver and kidney damage when ingested by laboratory animals.

Botrytis sp.

Aw 0.93. Conidia dimensions: 7-14 x 5-9 microns. It is parasitic on plants and soft fruits. Found in soil and on house plants and vegetables, it is also known as "gray mold". It causes leaf rot on grapes, strawberries, lettuce, etc. It is a well-known allergen, producing asthma type symptoms in greenhouse workers and "wine grower's lung".

Cercaspora

Common outdoors in agricultural areas, especially during harvest. Parasite of higher plants, causing leaf spot. Commonly found as parasites on higher plants.

Chaetomium sp.

large ascomycetous fungus producing perithecia. It is found on a variety of substrates containing cellulose, including paper and plant compost. It has been found on paper in sheetrock. It can produce an *Acremonium*-like state on fungal media. Varieties are considered allergenic and have been associated with peritonitis, cutaneous lesions, and system mycosis.

Cladosporium sp.

Aw 0.88; Aw 0.84. Most commonly identified outdoor fungus. The outdoor numbers are reduced in the winter. The numbers are often high in the summer. Often found indoors in numbers less than outdoor numbers. It is a common allergen. Indoor *Cladosporium* sp. may be different than the species identified outdoors. It is commonly found on the surface of fiberglass duct liners in the interior of supply ducts. A wide variety of plants are food sources for this fungus. It is found on dead plants, woody plants, food, straw, soil, paint, and textiles. Produces greater than 10 antigens. Antigens in commercial extracts are of variable quality and may degrade within weeks of preparation. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include skin lesions, eye ulceration, mycosis (including onychomycosis, an infection of the nails of the feet or hands) edema and bronchospasms; chronic cases may develop pulmonary emphysema.

Reported to be allergenic and has been associated with allergic fungal sinusitis. It may cause corneal infections, mycetoma, and infections in immune compromised hosts.

Dreschlera sp.

Conidia dimensions: 40-120 x 17-28 microns. Found on grasses, grains and decaying food. It can occasionally cause a corneal infection of the eye.

Epicoccum sp.

Conidia dimensions: 15-25 microns. A common allergen. It is found in plants, soil, grains, textiles and paper products.

Fusarium sp.

Aw 0.90. A common soil fungus. It is found on a wide range of plants. It is often found in humidifiers. Several species in this genus can produce potent trichothecene toxins. The trichothecene (scirpene) toxin targets the following systems: circulatory, alimentary, skin, and nervous. Produces vomitoxin on grains during unusually damp growing conditions. Symptoms may occur either through ingestion of contaminated grains or possibly inhalation of spores. The genera can produce hemorrhagic syndrome in humans (alimentary toxic aleukia). This is characterized by nausea, vomiting, diarrhea, dermatitis, and extensive internal bleeding. Reported to be allergenic. Frequently involved in eye, skin, and nail infections.

Myxomycetes

Members of a group of fungi that is included in the category of "slime molds". They're occasionally found indoors, but mainly reside in forested regions on decaying logs, stumps, and dead leaves. Myxomycetes display characteristics of fungi *and* protozoans. In favorable (wet) conditions they exhibit motile, amoeba-like cells, usually bounded only by a plasma membrane, that are variable in size and form. During dry spells, they form a resting body (sclerotium) with dry, airborne spores. These fungi are not known to produce toxins but can cause hay fever and asthma.

Memnoniella

Contaminant found most often with *Stachybotrys* on wet cellulose. Forms in chains, but it are very similar to *Stachybotrys* and sometimes is considered to be in the *Stachybotrys* family. Certain species do produce toxins very similar to the ones produced by *Stachybotrys chartarum* and many consider the IAQ importance of *Memnoniella* to be on par with *Stachybotrys*. Allergenic and infectious properties are not well studied.

Commonly found in warm climates, this mold may be responsible for allergic reactions such as hay fever and asthma. It is found on decaying plant material and in the soil. It is not often found indoors.

Oidium sp.

The asexual phase of *Erysiphe* sp. It is a plant pathogen causing powdery mildews. It is very common on the leaf's stems, and flowers of plants. The health effects and allergenicity have not been studied. It does not grow on non-living surfaces such as wood or drywall.

Penicillium sp.

Aw 0.78 - 0.88. A wide number of organisms have been placed in this genus. Identification to species is difficult. Often found in aerosol samples. Commonly found in soil, food, cellulose and grains. It is also found in paint and compost piles. It may cause hypersensitivity pneumonitis, allergic alveolitis in susceptible individuals. It is reported to be allergenic (skin). It is commonly found in carpet, wallpaper, and in interior fiberglass duct insulation. Some species can produce mycotoxins. Common cause of extrinsic asthma (immediate-type hypersensitivity: type I). Acute symptoms include edema and bronchospasms; chronic cases may develop pulmonary emphysema. It may also cause headaches, vomiting, and diarrhea.

Periconia sp.

Periconia sp. are found in soil, blackened and dead herbaceous stems leaf spots, grasses, rushes, and sedges. Almost always associated with other fungi. Rarely found growing indoors. Reportedly associated with a rare case of mycotic keratitis.

Pithomyces sp.

A common mold found on dead leaves, plants, soil and especially grasses. Causes facial eczema in ruminants. It exhibits distinctive multi-celled brown conidia. It is not known to be a human allergen or pathogen. It is rarely found indoors, although it can grow on paper.

Rusts/Smuts

These fungi are associated with plant diseases. In the classification scheme of the fungi, the smuts have much in common with the rusts, and they are frequently discussed together. Both groups produce wind-borne, resistant teliospores that serve as the basis for their classification and their means of spread. Rusts usually attack vegetative regions (i.e., leaves and stems) of plants; smuts usually are associated with the reproductive structures (seeds). They can cause hay fever and asthma.

Spegazzinia

Spegazzinia species comprise a very small proportion of the fungal biota. This genus is somewhat related to other lobed or ornamented genera such as *Candelabrum*. No information is available regarding health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) May also be found in air by culturable (Andersen) samples if a long enough incubation period is provided so that sporulation occurs. Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes soil and many kinds of trees and plants.

Stachybotrys sp.

Aw - 0.94, optimum Aw ->0.98. Several strains of this fungus (S. atra, S. chartarum and S. alternans are synonymous) may produce a trichothecene mycotoxin- Satratoxin H which is poisonous by inhalation. The toxins are present on the fungal spores. This is a slow growing fungus on media. It does not compete well with other rapidly growing fungi. The dark colored fungus grows on building material with high cellulose content and low nitrogen content. Areas with a relative humidity above 55%, and are subject to temperature fluctuations, are ideal for toxin production. Individuals with chronic exposure to the toxin produced by this fungus reported cold and flu symptoms, sore throats, diarrhea, headaches, fatigue, dermatitis, intermittent local hair loss and generalized malaise. Other symptoms include coughs, rhinitis, nosebleed, a burning sensation in the nasal passages, throat, and lungs, and fever. The toxins produced by this fungus will suppress the immune system affecting the lymphoid tissue and the bone marrow. Animals injected with the toxin from this fungus exhibited the following symptoms: necrosis and hemorrhage within the brain, thymus, spleen, intestine, lung, heart, lymph node, liver, and kidney. Affects by absorption of the toxin in the human lung are known as pneumomycosis.

This organism is rarely found in outdoor samples. It is usually difficult to find in indoor air samples unless it is physically disturbed (or possibly -this is speculation- a drop in the relative humidity). The spores are in a gelatinous mass. Appropriate media for the growth of this organism will have high cellulose content and low nitrogen content. The spores will die readily after release. The dead spores are still allergenic and toxigenic. Percutaneous absorption has caused mild symptoms.

Stemphylium sp.

Reported to be allergenic. Isolated from dead plants and cellulose materials.

Torula sp.

Found outdoors in air, soil, on dead vegetation, wood, and grasses. Also found indoors on cellulose materials. Reported to be allergenic and may cause hay fever and asthma.

Tetraploa

Tetraploa species comprise a very small proportion of the fungal biota. This genus is somewhat related to *Triposporium* and Diplocladiella. The only reported human infections are two cases of keratitis (1970, 1980) and one case of subcutaneous infection of the knee (1990). No information is available regarding other health effects or toxicity. Allergenicity has not been studied. Usually identified on spore trap samples where it is seen every few weeks. (Spores have very distinctive morphology.) Our laboratory has never found this organism growing on indoor environmental surfaces. Natural habitat includes leaf bases and stems just above the soil on many kinds of plants and trees.

Ulocladium sp.

Aw 0.89. Isolated from dead plants and cellulose materials. Found on textiles.

Zygomycetes

Zygomycetes are one of the four major groups of fungi, the others being the Oomycetes, the Ascomycetes, and the Basidiomycetes. Zygomycetes are common, fast growing, and often overgrow and/or inhibit other fungi nearby. Rhizopus and Mucor are two of the most common Zygomycetes seen in the indoor environment. However, others are seen as well, including *Syncephalastrum*, *Circinella*, *Mortierella*, *Mycotypha*, *Cunninghamella*, and *Choanephora*. For further information, please see descriptions of these individual genera.